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Abstract 
 

We characterize three classes of demand systems, all of which are defined non-

parametrically: homothetic demand systems with a single aggregator (HSA), those with direct 

implicit additivity (HDIA), and those with indirect implicit additivity (HIIA). For any number of 

goods, all the cross-price effects are summarized by one price aggregator in the HSA class and by 

two price aggregators in the HDIA and HIIA classes. Each of these three classes contains CES as 

a special case. Yet, they are pairwise disjoint with the sole exception of CES. Thus, these classes 

of homothetic demand systems offer us three alternative ways of departing from CES. 
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1. Introduction 
Across many fields of applied general equilibrium, such as economic growth and 

development, macroeconomics, international trade, and public finance, it is routinely assumed that 

consumers have homothetic preferences and that production technologies have constant returns to 

scale (CRS). The homotheticity plays an important role in these areas for a variety of reasons. First, 

the identical homothetic preference allows for the aggregation across households with different 

income and expenditure levels, which makes it possible to derive the aggregate consumption 

behavior as the outcome of the utility maximization of the hypothetical representative consumer. 

Second, the ubiquitous assumption of perfect competition is valid only when the industry has CRS 

technologies.4 Third, these assumptions imply that, holding the prices constant, the budget share 

of each good (or factor) is independent of the household expenditure (or the scale of operation by 

industries). This allows us to focus on the role of relative prices in the allocation of resources. 

Furthermore, in multi-sector growth models, it is necessary to make these assumptions in order to 

ensure the existence of a balanced growth path. 

In practice, however, most models assume not only that preferences (technologies) are 

homothetic (CRS), but also that they satisfy the stronger property of the constant-elasticity-of-

substitution (CES), particularly when there are more than two goods (or factors). While CES buys 

a great deal of tractability, it is highly restrictive. First, CES implies that the price elasticity of 

demand for each good and factor is not only constant but also identical across goods and factors. 

Second, it also implies that the relative demand for any two goods (or factors) is independent of 

the prices of any other goods (or factors). Third, under CES, the marginal rate of substitution 

between any two goods is independent of the consumption of any other goods. Fourth, under CES, 

gross substitutes (complements) automatically imply that all goods are inessential (essential) 

goods. In particular, CES cannot capture a demand pattern in which some goods are essential while 

others are inessential. 5  Fifth, in a monopolistically competitive setting, the CES demand for 

differentiated products implies that each firm sells its product at a constant markup, which is 

independent of pricing behavior of other firms or the number of competing firms. Although there 

have been some isolated attempts to replace CES by different parametric homothetic utility 

                                                
4 Recall that, even when each firm has a U-shaped average cost curve, a competitive industry, consisting of many 
identical firms, has CRS technologies, because its scale can change at the extensive margin. 
5 We provide formal definitions of essential/inessential goods later. Intuitively, water is essential (indispensable) 
because zero consumption of water makes marginal utility of all other goods zero. This distinction should not be 
confused with that of necessities/luxuries, which are about the goods whose income elasticities are smaller/greater than 
one. Under homothetic preferences, there are no necessities/luxuries. 
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functions and CRS production functions, a vast majority of studies continue to use the CES due to 

the lack of better options. 

In this paper, we characterize three alternative classes of flexible homothetic demand 

systems. Each of these classes contains CES as a special case. Yet, they offer three alternative 

ways of departing from CES, because non-CES homothetic demand systems in these three classes 

do not overlap. Furthermore, they are flexible in the sense that each of them is defined non-

parametrically. 

Here is a roadmap of the present paper. After a quick review of the basic properties of 

general homothetic demand systems in Section 2, we define and characterize homothetic demand 

systems with a single aggregator (HSA) in Section 3. This class of demand systems is identified 

by the property that the budget share of each good is a function of its own price divided by a single 

price aggregator (linear homogeneous in all prices), which is common across all goods. For each 

set of the budget-share functions, this common price aggregator is defined so that the budget 

constraint of the consumer is satisfied. 6  The defining feature of HSA is that a single price 

aggregator captures the cross-price effects on demands for all goods.7 We find the necessary and 

sufficient conditions on a set of the budget-share functions under which the corresponding HSA 

demand system is generated by a well-defined, monotone, convex, homothetic preference. 

Furthermore, we establish the one-to-one mapping between the preference and the budget-share 

functions that satisfy these conditions whenever there are more than two goods. This means that 

we can treat the budget-share functions as the primitives of the model. In addition, we derive the 

functional relationship between the common price aggregator, which summarizes all the cross-

price effects on demand, and the ideal price index of the preference, which summarizes the welfare 

effect of prices. Remarkably, these two price aggregators coincide if and only if the preference is 

CES when there are more than two goods. We also discuss some parametric examples of HSA, 

including separable translog, for which the common price aggregator is the weighted geometric 

                                                
6 Alternatively, this class of demand systems can be identified by the property that the budget share of each good is a 
function of its own quantity divided by a common quantity aggregator, and for each set of the budget-share functions, 
this common quantity aggregator is defined so that the budget constraint of the consumer is satisfied. We will show 
the equivalence of these two definitions. 
7  The HSA demand systems is an intersection of homothetic demand systems and what Pollak (1972) called 
generalized additively separable (GAS) demand systems. (We thank Peter Neary for bringing our attention to Pollak 
1972). However, it makes little sense to call it “homothetic generalized additively separable,” because Pollak’s class 
of demand systems is “generalized additively separable,” in that it nests both directly explicitly additive and indirectly 
explicitly additive demand systems, which are all nonhomothetic with the sole exception of CES. Furthermore, this 
class of demand systems nests neither directly implicitly additive nor indirectly implicitly additive demand systems. 
Instead, we prefer to call it “homothetic demand systems with a single aggregator” (HSA), because it describes the 
exact nature of the restrictions imposed. 
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mean of prices and linear expenditure shares, for which the common price aggregator is the 

weighted arithmetic mean of prices. We also offer an example of HSA, which is a hybrid of Cobb-

Douglas and CES, such that all goods are gross substitutes, and yet only some of them are essential. 

Then, in Section 4, we turn to two other classes of homothetic demand systems, both of 

which are generated by implicitly additive preferences;8 one with direct implicit additivity (HDIA) 

in Section 4.1, and one with indirect implicit additivity (HIIA) in Section 4.2. We show that, in 

each of these two classes of homothetic demand systems, the cross-price effects are characterized 

by two price aggregators, one of which is the ideal price index. Furthermore, it is shown that these 

two price aggregators are proportional to each other and these homothetic demand systems become 

HSA if and only if the preference is CES. From these results, it is a short step to demonstrate in 

Section 4.3 that these three classes of homothetic demand systems, HSA, HDIA, and HIIA, are 

pairwise disjoint with the sole exception of CES.9 

Before proceeding, it should be pointed out that, although we discuss homothetic demand 

systems in terms of consumer preferences, they could be equally interpreted as input demand 

systems by the producers with a CRS technology. With this interpretation, the prices of goods 

become the prices of factors; the indifference sets of a homothetic preference becomes the 

isoquants of a CRS technology, and the ideal price index becomes the unit cost function. 

2. Homothetic demand systems: a quick review 
Let us first recall some general properties of homothetic demand systems. In what follows, 

we use the following standard notation. We assume an 푛-dimensional consumption space ℝ . 

Consumption bundles and price vectors are denoted, respectively, by 퐱 ∈ ℝ  and 퐩 ∈ ℝ , where 

푛 is the number of available goods, which is exogenously fixed. 

Recall that a rational preference ≿ over ℝ  is called homothetic if any two indifference 

sets generated by ≿ can be mapped one into another by means of a homothetic transformation, or 

a uniform rescaling, which means a proportional expansion from or contraction towards the origin. 

A homothetic preference can be represented by an increasing, linear homogeneous, and concave 

direct utility function, 푢(퐱), and its indirect utility function 푉(퐩,ℎ) can be represented as: 

                                                
8 We do not consider exploring explicit additivity, direct or indirect, for a simple reason: non-CES homothetic demand 
systems are incompatible with explicit additivity. See Berndt and Christensen (1973, Theorem 6). 
9 To be precise, these results hold true when there are more than two goods. 
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푉(퐩,ℎ) ≡ max

퐱∈ℝ
{푢(퐱)|퐩퐱 ≤ ℎ} =

ℎ
푃(퐩), 

(1) 

where ℎ is consumer’s income while 푃(퐩) is an increasing, linear homogeneous, and concave 

function of 퐩. This function, often called an ideal price index or a cost-of-living index, fully 

characterizes a homothetic preference. 

Note that both the direct utility function 푢(퐱)	 and the ideal price index 푃(퐩)  of a 

homothetic preference ≿ are defined up to an arbitrary positive coefficient, meaning that 푢(퐱) 

and 푢(퐱)/푐 or 푃(퐩) and 푐푃(퐩) correspond to the same preference for any 푐 > 0. 

In this paper, we will focus on such homothetic preferences for which the price index 푃(퐩) 

is almost everywhere twice continuously differentiable in 퐩. In this case, we can use Roy’s identity 

to obtain the demand system associated with (1): 

 
푥 =

ℎ
푝 ℰ (푃), 

(2) 

where ℰ (푃) is the elasticity of the ideal price index with respect to the price: 

ℰ (푃) ≡
휕푃
휕푝

푝
푃 . 

The elasticity ℰ (푃) captures the budget-share of good 푖 . As implied by the Euler’s 

Theorem on linear homogeneity, these budget-shares sum up to one: 

	ℰ (푃) = 1. 

Likewise, the inverse demand system associated with (1) can be represented as: 

푝 =
ℎ
푥 ℰ (푢), 

(2*) 

where ℰ (푢) is the elasticity of the direct utility function with respect to the quantity: 

ℰ (푢) ≡
휕푢
휕푥

푥
푢 , 

which is also the budget-share of good 푖. Again, as implied by the Euler’s Theorem on linear 

homogeneity, these budget-shares sum up to one: 

	ℰ (푢) = 1. 



6 
 

3. Homothetic demands with a single aggregator (HSA) 
We now introduce homothetic demand systems with a single aggregator (henceforth HSA), 

the first of the three classes we study. A HSA demand system is given by: 

푥 =
ℎ
푝 푠

푝
퐴(퐩) , 

(3) 

where 푠 :ℝ → ℝ  are functions, while 퐴(퐩) is a common price aggregator, which is a linear 

homogenous function of 퐩 defined as a solution to 

푠
푝
퐴 = 1. 

(4) 

Clearly, any demand system described by (3) – (4) satisfies the budget constraint: 

 
푝 푥 = ℎ. 

(5) 

HSA demand systems are the homothetic restriction on what Pollak (1972) refers to as 

generalized additively separable (GAS) demand systems. To the best of our knowledge, there was 

no attempt to provide sufficient conditions for the “candidate” demand system described by (3) – 

(4) to actually be a demand system generated by some well-behaved convex homothetic 

preference.10 This is what we do in Proposition 1 below. 

Before providing a general characterization of HSA demand systems, however, we start 

with the two most familiar examples to gain some intuition. 

 

Example 1: Cobb-Douglas. When 푠 (푧 ) = 훼 , where 훼 , … ,훼  are positive constants 

such that ∑ 훼 = 1, (3) – (4) boils down to the Cobb-Douglas demand system. Note that in this 

case, the ideal price index is 푃(퐩) = 푐 ∏ 푝 , while the common price aggregator 퐴(퐩) is 

indeterminate, since (4) holds identically for any 퐴(퐩). 

 

Example 2: CES. We obtain the CES demand system if we set 푠 (푧 ) = 훽 푧  in (3) – 

(4), where the coefficients 훽  are such that 

                                                
10 For many properties of GAS, Pollack (1972) referred to the unpublished manuscript by W. Gorman, which was 
subsequently published as Gorman (1996), in which he wrote the disclaimer on pp.202-203: "Throughout this paper I 
have talked as if my claims were definitely proven. Of course, this is not so: my arguments are far from rigorous... 
Finally, I have said nothing at all about convexity." 
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훽 > 0	, 훽 = 1, 

while 휎 > 0 is the constant elasticity of substitution. Note that 푠 (푧 ) are all increasing when 

0 < 휎 < 1 (i.e. when the goods are gross complements), all decreasing when 휎 > 1 (i.e. when 

the goods are gross substitutes) and all constant when 휎 = 1 (i.e. the Cobb-Douglass case). The 

corresponding CES utility function is given by 

푢(퐱) = 훾 푥 , 

where 훾 ≡ 훽 . As implied by (4), the common price aggregator 퐴(퐩) is proportional to the 

standard CES price index: 

퐴(퐩) = 훽 푝 = 푐푃(퐩). 

However, it is worth pointing out that in general 퐴(퐩) need not be an ideal price index 

associated with a homothetic preference generating (3) – (4) as a Marshallian demand system. In 

fact, when there are at least three goods, CES is the only case where 퐴(퐩) = 푐푃(퐩)  (see 

Proposition 1 below). 

Before proceeding, another restrictive feature of CES demands is worth mentioning. The 

goods are gross substitutes (i.e., the budget-share functions, 푠 (푧) = 훽 푧 , are decreasing) only 

if 휎 > 1. Thus, the budget share of each good converges to zero when 푧 → ∞. And each good is 

inessential (or dispensable), i.e., lim
→

푃(퐩) < ∞  and 푢(퐱)	  generates monotone preferences 

over 퐱 ∈ ℝ ∩ {푥 = 0} for each 푖. On the other hand, if 휎 ≤ 1, the budget share of each good, 

푠 (푧) = 훽 푧 , is bounded away from zero when 푧 → ∞ . And each good is essential (or 

indispensable), i.e., lim
→

푃(퐩) = 	∞  and 푢(퐱) = 0	  for all 퐱 ∈ ℝ ∩ {푥 = 0}  for each 푖 . 

Thus, each good is essential (or indispensable) in the sense that, at zero consumption of that good, 

the utility is at its minimum level and the marginal utility of all other goods is zero. Thus, CES 

implies that, if one good is essential, all goods must be essential; the CES cannot capture situations 

when some goods are essential, and others are not. Furthermore, under the CES, the very concept 

of a good being essential or inessential becomes somewhat redundant: gross complements 

(respectively, substitutes) are always essential (inessential) goods. 
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A question which is both natural and legitimate at this point is as follows: what restrictions 

are to be imposed on the functions 푠 (∙) for a demand system given by (3) – (4) to be compatible 

with rational consumer behavior? The answer to this question is given by the following Proposition. 

Proposition 1. Consider a mapping 퐬(퐳) = 푠 (푧 ), … , 푠 (푧 )  from ℝ  to ℝ , which 

is differentiable almost everywhere, normalized by 

 
푠 (1) = 1, 

(6) 

and satisfies the following conditions: 

 푠 (푧 ) ∙ 푧 < 푠 (푧 ),			푖 = 1, …푛, (7) 

 푠 (푧 )푠 푧 ≥ 0,			푖, 푗 = 1, … , 푛, (8) 

for all 퐳 such that ∑ 푠 (푧 ) = 1. Then: 

(i) For any such mapping, there exists a unique monotone, convex, continuous and 

homothetic rational preference ≿ over ℝ , such that the demand system described by (3) – (4) 

is generated by ≿. Furthermore, when 푛 ≥ 3 and ≿ is HSA, the mapping 퐬(퐳) is uniquely 

defined over the set {퐳 ∈ ℝ :∑ 푠 (푧 ) = 1}. 

(ii) This homothetic preference is described by an ideal price index which is defined by 

ln푃(퐩) = ln퐴(퐩) +
푠 (휉)
휉 d휉

/ (퐩)

, 
 

(9) 

where 푐 > 0 is a constant. 

(iii) When 푛 ≥ 3, 퐴(퐩) = 푐푃(퐩) iff ≿ is a CES. 

Proof. See the Appendix. ∎ 

Without loss of generality, Eq. (6) normalizes the common price aggregator A(퐩) so that 

	퐴(ퟏ) = 1 , where 	ퟏ ≡ 	 (1,1, … ,1) . Eq. (7) requires that the elasticities of the budget-share 

functions 푠 (푧 ), whenever well-defined, do not exceed 1. Eq.(8) states that, for (3) – (4) to be 

generated by a well-defined preference for all 	퐩 ∈ ℝ , the budget-share functions cannot be 

increasing for some goods while decreasing for others at some 퐳 such that ∑ 푠 (푧 ) = 1. 

They can be all increasing (in which case the goods are gross complements), all decreasing (in 

which case the goods are gross substitutes), or all constant (which corresponds to the Cobb-Douglas 

case). They can be also increasing (decreasing) for some goods and constant for others. 

Part (i) of Proposition 1 establishes a one-to-one correspondence between the set of 

homothetic preferences generating a demand system with a single aggregator and the mappings 
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퐬(퐳) for 푛 ≥ 3. Hence, the budget-share mapping 퐬(퐳) can be treated as a primitive of the 

model.11 

 

Part (ii) of Proposition 1 provides an explicit dual description of a homothetic preference 

associated with the budget-share mapping 퐬(퐳) . In addition, equation (9) clearly shows the 

difference and the relation between the ideal price index 푃(퐩), which captures the welfare effects 

of prices, and the common price aggregator 퐴(퐩), which summarizes the cross-price effects on 

demand for all goods. This difference is captured by the “residual term”: 

푠 (휉)
휉 d휉

/ (퐩)

. 

Finally, part (iii) of Proposition 1 stresses the exceptional nature of the CES, which has been 

emphasized in many different contexts.12 

Three remarks are in order. 

Remark 1. Note that A(퐩) itself cannot serve as a primitive. To see this, for any budget-

share mapping, 퐬(퐳) = 푠 (푧 ), … , 푠 (푧 ) , which satisfies the conditions (6) – (8), consider 

another budget-share mapping given by 

 퐬 (퐳) ≡ (1 − 휀)퐬(퐳) + 휀훂, (10) 

where 훂 = (훼 , … ,훼 )  is a positive vector, satisfying ∑ 훼 = 1 , while 	휀 ∈ (0,1) . Thus, 

퐬 (퐳) is a convex combination of the original demand system and a Cobb-Douglas demand system 

(Example 1). Clearly,	퐬 (퐳) also satisfies (6) – (8). Furthermore,  

푠
푝
퐴 = (1 − 휀)푠

푝
퐴 + 휀훼 = (1 − 휀) 푠

푝
퐴 + 휀 = 1 

is equivalent to ∑ 푠 = 1. Thus, as implied by (4), 퐬 (퐳) gives rise to the same price 

aggregator with 퐬(퐳), A(퐩), and yet they generate different demand systems. 

                                                
11 A fully precise formulation would be “the restriction of the mapping 퐬(퐳) to 퐬 (Δ ) can be treated as a 
primitive of the model”, where Δ  denotes the standard (푛 − 1)-dimensional simplex. 
12 For example, in one of the first applications of the duality principle in consumption theory, Samuelson (1965) 
showed that the CES is the only preference which is both directly and indirectly explicitly additive. Berndt and 
Christensen (1973, Theorem 6) showed that the CES is the only homothetic preference which is (either directly or 
indirectly) explicitly additive. Parenti et al. (2017) have extended these results to the case of a continuum of goods by 
showing that the three classes of symmetric preferences – directly explicitly additive, indirectly explicitly additive, 
and homothetic – are pairwise disjoint, except for the CES. 
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Remark 2. When 푛 = 2, the “one-to-one” property stated in part (i) of Proposition 1 fails 

to hold. In fact, when 푛 = 2, any homothetic preference is HSA. Furthermore, any increasing 

linear homogeneous function can be used as 퐴(퐩). To see why this is so, consider an arbitrary 

homothetic demand system over ℝ : 

푥 =
ℎ
푝 푔

푝
푝 ,	 

where 푖, 푗 = 1,2, 푖 ≠ 푗 , while 푔  are budget-share functions. Fix an arbitrary increasing, 

continuous and linear-homogeneous function 퐹(푝 , 푝 )  and let 푝 (푝 ,퐴) , 푖, 푗 = 1,2, 푖 ≠ 푗 , 

denote the solution to the equation 퐹(푝 , 푝 ) = 퐴 with respect to each price. Clearly, 푝 (푝 ,퐴) 

are linear homogeneous. Setting 푠 (푧 ) ≡ 푔 푝 (1,1/푧 )  yields representation (3) – (4) with 

퐴(퐩) = 퐹(푝 , 푝 ). However, because the function 퐹(푝 ,푝 ) is arbitrary, 푠 (푧 ) can be defined 

in many ways for the same preference ≿ over ℝ . This should not be surprising, since the 

question of whether the cross-price effects can be summarized in a single number is vacuous when 

there are only two goods. 

Remark 3. The reader may wonder if it might be possible to define another class of HSA 

demand systems, in which the budget share of each good is a function of its own quantity divided 

be a common quantity aggregator. More specifically, consider an inverse demand system given by: 

푝 =
ℎ
푥 푠∗

푥
퐴∗(퐱) , 

(3*) 

where 푠∗:ℝ → ℝ  are functions, while 퐴∗(퐱) is a common quantity aggregator, which is a 

linear homogenous function of 퐱 defined as a solution to 

푠∗
푥
퐴∗ = 1. 

(4*) 

In fact, the class of HSA demand systems, (3*) – (4*), characterized by the budget-share mappings 

퐬∗(퐲) = 푠∗(푦 ), … , 푠∗(푦 )  satisfying the conditions: 

푠∗ (푦 ) ∙ 푦 < 푠∗(푦 ),			푖 = 1, …푛, (7*) 

푠∗ (푦 ) ∙ 푠∗ 푦 ≥ 0,			푖, 푗 = 1, …푛, (8*) 

  

are equivalent to the class of HSA demand systems, (3) – (4), characterized by the budget-share 

mappings 퐬(퐳) = 푠 (푧 ), … , 푠 (푧 )  satisfying the conditions (7) and (8), with the one-to-one 

correspondence between 퐬(퐳) and 퐬∗(퐲) given by 
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푠∗ = 	 푠 (푠∗/푦 ), 푖 = 1, … , 푛, 

or, equivalently, by 

푠 = 푠∗(푠 /푧 ), 푖 = 1, … , 푛. 13 

In short, these two classes of HSA are self-dual to each other. See the Appendix for the proof. 

Furthermore, using the budget-share mapping 퐬∗(퐲) as a primitive, the direct utility function can 

be obtained as follows:	 

ln푢(퐱) = ln퐴∗(퐱) +
s∗(휉)
휉 d휉

/ ∗(퐱)

. 
(9*) 

The derivation of (9*) is similar to that of (9), hence omitted. 

 

We consider a few more examples to demonstrate the flexibility of HSA demand systems 

given by (3) – (4) or, equivalently, by (3*) – (4*). The following examples also help to gain some 

intuition behind the difference between 퐴(퐩) and 푃(퐩). 

 

Example 3a: Separable translog. The translog expenditure function (Christensen et al., 

1973, 1975) is characterized by the following ideal price index: 

ln푃(퐩) = 훿 ln푝 −
1
2 훾 ln푝 ln푝 − ln 푐

,

, 

where 훿  are all positive while the matrix (훾 ) , ,…,  is symmetric and positive semidefinite, 

and the following normalizations hold: 

훿 = 1, 훾 = 0. 

for all 푖 = 1, … ,푛. Using (2), the corresponding demand system is given by 

푥 =
ℎ
푝 훿 − 훾 ln푝 − 훾 ln푝 . 

In general, this demand system is not HSA. To single out a subclass of translog demand systems 

which have the HSA property, assume additionally that 훾 = −훾훽 훽  for all 푖 ≠ 푗, where 훾 ≥ 0 

while 훽  are all positive and such that ∑ 훽 = 1. This implies 훾 = 훾훽 (1 − 훽 ). We refer to 

                                                
13 Note that 푠∗ = 	 푠 (푠∗/푦 )  uniquely defines 푠∗(푦 )  when 푠 (푧 )  satisfies (7), while 푠 = 푠∗(푠 /푧 )		uniquely 
defines 푠 (푧 )	when 푠∗(푦 )		satisfies (7*). 
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translog demand systems satisfying these restrictions as separable translog.14 In this case, the 

demand system becomes 

 
푥 =

ℎ
푝 훿 − 훾훽 ln

푝
퐴(퐩) , 

(11) 

where the common price aggregator 퐴(퐩) is the weighted geometric mean of prices: 

 
ln퐴(퐩) = 훽 ln푝 . 

(12) 

By setting 푠 (푧 ) = 훿 − 훾훽 ln푧 , the demand system (11) – (12) can be obtained as a special case 

of (3) – (4). 15  Notice that the weight on the price of good 푖  in (11) is 훽 , the relative 

responsiveness of the budget share of good 푖 to its “relative price”, 푝 /퐴(퐩). In contrast, 훿  

affects the level of the budget share of good 푖, but not its responsiveness to the relative price. This 

explains why 퐴(퐩) is independent of 훿 . 

The ideal price index associated with separable translog preferences is given by 

ln푃(퐩) = 훿 ln푝 −
훾
2 훽 (ln푝 ) − 훽 ln푝 − ln 푐 ≠ ln퐴(퐩), 

which is confirmed by the general formula (9). Notice that, unlike in the CES case, here 퐴(퐩) ≠

푐푃(퐩). In particular, 훿 , 	푖 = 1, …푛, appear in the ideal price index, 푃(퐩), despite they do not 

appear in the common price aggregator, 퐴(퐩). 

It is also worth noting that that Cobb-Douglas is a special case of (11) – (12) where 훾 = 	0. 

 

In example 3a, 훾 must be non-negative, since otherwise we have 

푧 푠 (푧 )
푠 (푧 ) =

(−훾)훽
훿 + (−훾)훽 ln 푧 , 

                                                
14 With these restrictions, the Allen-Uzawa elasticity of substitution between good 푖  and good 푗 ≠ 푖  is 
multiplicatively separable, as 휎 = 	훾(훽 /푠 )(훽 /푠 ), which implies, among other things, that 휎 /휎  is independent 
of 푘 ≠ 푖, 푗. Note also that symmetric translog preferences, proposed by Feenstra (2003) in the context of monopolistic 
competition, satisfy these restrictions with 훽 = 1/푛. 
15 Strictly speaking, this is only true when prices are such that all the goods are consumed in positive volumes. This 

price domain is defined by the following system of inequalities: 

ln 푝 − 훽 ln 푝 <
훿
훾훽  

for all 푖 = 1, … , 푛, which means that the dispersion of log-prices should be sufficiently low. When these conditions 

are not satisfied, the expression for 퐴(퐩) becomes more complex than (12). However, the separable translog demand 

system can still be obtained as a special case of (3) – (4) by setting 푠 (푧 ) = max{훿 − 훾훽 ln 푧 , 0}. 
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and assumption (7) will be violated whenever 

exp −
훿

(−훾)훽 < 푧 < exp 1−
훿

(−훾)훽 . 

In other words, unlike the CES, this example is not compatible with gross complementarity. 

 

Example 3b: Modified translog. To overcome the incompatibility of Example 3a with 

gross complements, we consider the following modification: 

 푠 (푧 ) = max{훿 + 훾훽 ln 푧 ,훾훽 } (13) 

where 훿  and 훽  are all positive and such that 

훽 = 훿 = 1,			0 < 훾 < min
,…,

훿
훽 . 

It can be easily verified that 퐬(퐳) defined by (13) is a budget-share mapping which satisfies 

all the assumptions of Proposition 1. The corresponding HSA demand system is given by 

 
푥 =

ℎ
푝 max 훿 + 훾훽 ln

푝
퐴(퐩) , 훾훽 , 

(14) 

where the price aggregator 퐴(퐩) is again defined by (12), while the ideal price index is given by 

ln푃(퐩) = 훿 ln푝 +
훾
2 훽 (ln푝 ) − 훽 ln푝 − ln 푐, 

which is confirmed by the general formula (9).16 

 

Example 4: Linear expenditure shares. Another natural extension of Cobb-Douglas is a 

demand system with linear expenditure shares: 

푠 (푧 ) = max{(1 − 훿)훼 + 훿훽 푧 , 0}, 

where 훼 > 0 and 훽 > 0 are such that 

훼 = 1, 훽
	

= 1, 

while 훿 < 1. The goods are gross complements when 0 < 훿 < 1 and gross substitutes when 

훿 < 0. The Cobb-Douglas is a borderline case when 훿 = 0. 

In this case, the common price aggregator 퐴(퐩) is the weighted arithmetic mean of prices: 

                                                
16 Note that remarks similar to that in footnote 11 do not apply here, since the demand system (14) does not have, 
unlike the standard translog, finite reservation prices. 
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퐴(퐩) = 훽 푝 , 

with the weight 훽  given by the relative responsiveness of the budget share to its relative price. In 

contrast, the ideal price index is given by 

푃(퐩) = 푐[퐴(퐩)] 푝 . 

Notice that 훼 , which affect the level of the budget share, appear in the ideal price index, 

P(퐩), but not the common price aggregator, 퐴(퐩). 

 

Examples 3a, 3b, and 4 illustrate the crucial difference between 퐴(퐩) and 푃(퐩). The 

prices of goods whose budget shares are more responsive to the relative price 푝 /퐴(퐩), carry more 

weight in the common price aggregator 퐴(퐩), while the prices of goods which account for larger 

shares in the budget carry more weight in the ideal price index 푃(퐩). Indeed, this holds generally. 

To see this, recall that, from (2), the weight on 푝  in 푃(퐩), or the elasticity of 푃(퐩) with respect 

to 푝 , is given by 

ℰ (푃) ≡
휕푃
휕푝

푝
푃 = 푠

푝
퐴 , 

while the weight of on 푝  in 퐴(퐩), or the elasticity of 퐴(퐩) with respect to 푝 , can be calculated, 

from (4) 

ℰ (퐴) ≡
휕퐴
휕푝

푝
퐴 =

푠 푝
퐴

푝
퐴

∑ 푠 푝
퐴

푝
퐴

=
ℰ (푠 ) ∙ 푠 푝

퐴
∑ ℰ (푠 ) ∙ 푠 푝

퐴
. 

Thus, the weight of good 푖 in 푃(퐩) is equal to its budget share itself, while the weight of good 

푖 in A(퐩) is proportional to the elasticity of its budget share, ℰ (푠 ), multiplied by the budget 

share. This also explains why 퐴(퐩) = 푐푃(퐩) holds for the CES: with the isoelastic budget share 

functions, 푠 (푧) = 훽 푧 , ℰ (푠 ) is independent of 푖, so that ℰ (퐴) = 푠 = 	 ℰ (푃). 

 

Example 5: A Hybrid of Cobb-Douglas and CES: HSA is broad enough to include 

demand systems that allow for goods to be gross substitutes and at the same time essential. 

Furthermore, only a subset of goods can be essential. To see this, we apply the trick used in the 

Remark 1, Eq. (10), to the CES budget-share functions, which yields 푠 (푧) = 휀훼 +

(1 − 휀)훽 푧  for 0 < 휀 < 1, where 훼  and 훽  are such that 훼 ≥ 0	, ∑ 훼 = 1, 훽 > 0	,
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∑ 훽 = 1. The resulting demand system is a convex combination of a Cobb-Douglas and a CES, 

except 훼 	can be zero for some 푖. Using the same reasoning as in Remark 1, it follows from (4) 

that, the common price aggregator is equal to 퐴(퐩) = (∑ 훽 푝 ) , which is independent of 

휀. Hence, the demand system can be written as follows: 

 
푥 =

ℎ
푝 휀훼 + (1− 휀)

훽 푝
∑ 훽 푝

. 
(15) 

while the corresponding ideal price index is given by 

푃(퐩) = 푐 푝 훽 푝 = 푐 푝 퐴(퐩) , 

as implied by Proposition 1(ii). For 휎 > 	1, the goods are gross substitutes. Furthermore, for a 

small 휀 > 0, eq. (15) is practically indistinguishable from a CES demand system. Yet, for any 

휀 > 0, lim
→

푃(퐩) = 	∞ and 푢(퐱) = 0 for all 퐱 ∈ ℝ ∩ {푥 = 0} for each 푖	such	that	훼 > 	0, 

but not for 푖		such	that	훼 = 	0. In other words, good 푖	is essential and indispensable if and only 

if 훼 > 	0.17 

4. HDIA and HIIA: Two Cases of Homothetic Implicit Additivity 

We now turn to two classes of implicitly additive homothetic preferences. Hanoch (1975) 

introduces the general notion of implicitly additive preferences. Unlike explicit additivity, under 

which homotheticity is equivalent to CES, implicit additivity imposes a priori no functional relation 

between the income elasticity of each good and the cross-price elasticity of substitution across 

goods. Hence, implicit additivity allows for both nonhomothetic CES, used by Comin, Lashkari, 

and Mestieri (2015) and Matsuyama (2015), and homothetic non-CES, which is our focus here. 

Following Hanoch (1975), we distinguish between direct and indirect implicit additivity. 

 

4.1 HDIA preferences. 

                                                
17To understand the implications of this example, consider international trade between two countries, and suppose that 
some of the essential goods (say, water, food, fuels, electricity, medical supplies, etc) can be produced only in one 
country. With a small 휀 > 	0, the demand system can be approximated by CES, and generates a high estimate of the 
trade elasticity, 휎 > 	1. If we were to assume that the demand system is CES (i.e., 휀 = 	0), we would come up with 
a relatively small welfare loss due to autarky, even though the welfare loss of autarky is infinity (if measured in the 
ideal price index) for the country which cannot produce such essential goods. 
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A preference ≿  over ℝ  is said to be homothetic with direct implicit additivity 

(henceforth HDIA) if ≿ can be described by a linear homogeneous and strictly quasi-concave 

direct utility function 푢(퐱) which is implicitly defined as a solution to 

 
휙

푥
푢 = 1, 

(16) 

where the functions 휙 :ℝ → ℝ are either strictly increasing and strictly concave (in which case 

the goods are gross substitutes) or strictly decreasing and strictly convex (in which case the goods 

are gross complements). Moreover, 휙 (∙) are assumed to be twice continuously differentiable 

functions with the following normalization: 

 
휙 (1) = 1, 

(17) 

which implies 	u(ퟏ) = 1. The CES demand system is a special case, where 휙 (푧) = 훾 푧 / , 

with 훾 > 0 , ∑ 훾 = 1 , and 휎 > 0 . These functions 휙 (푧) are all strictly decreasing and 

strictly convex for 0 < 휎 < 1 (the case of gross complements), and are all strictly increasing and 

strictly concave for 휎 > 1 (the case of gross substitutes).18 

The following Proposition summarizes the properties of HDIA demand systems generated 

by (16). 

Proposition 2. Assume that the functions 휙 (∙) are either strictly increasing and strictly 

concave or strictly decreasing and strictly convex, are twice continuously differentiable functions, 

and satisfy the normalization (17). Then: 

(i) the HDIA preference ≿ described by (16) generates the Marshallian demand system of 

the following structure: 

 

푥 = ℎ
(휙 ) 푝

퐵(퐩)
푃(퐩) , 

 

(18) 

where 푃(퐩) is the HDIA ideal price index given by 

 
푃(퐩) = 푝 (휙 )

푝
퐵(퐩) , 

(19) 

while 퐵(퐩) is another price aggregator defined as the solution to 

                                                
18 A special case of (16) where there is a continuum of goods, while 휙 (∙) are strictly increasing and strictly concave 
(the case of gross substitutes) and are the same for all 푖, is known as Kimball’s flexible aggregator (Kimball, 1995). 
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휙 (휙 )

푝
퐵 = 1. 

(20) 

(ii) When 푛 ≥ 3, 퐵(퐩) = 푐푃(퐩) iff ≿ is a CES. 

Proof. See the Appendix. ∎ 

 

4.2 HIIA preferences.  

A preference ≿  over ℝ  is said to be homothetic with indirect implicit additivity 

(henceforth HIIA) if the ideal price index 푃(퐩) associated with ≿ is defined as a solution to 

 
휃

푝
푃 = 1, 

(21) 

where the functions 휃 :ℝ → ℝ are either strictly decreasing and strictly convex (in which case 

the goods are gross substitutes) or strictly increasing and strictly concave (in which case the goods 

are gross complements). Moreover, 휃 (∙) are assumed to be twice continuously differentiable 

functions satisfying the following normalization: 

 
휃 (1) = 1. 

(22) 

which implies	푃(ퟏ) = 1. The CES demand system is a special case, where 휃 (푧) = 훽 푧 , with 

훽 > 0, ∑ 훽 = 1, which are all strictly increasing and strictly concave for 0 < 휎 < 1 (the 

case of gross complements), and all strictly decreasing and strictly convex for 휎 > 1 (the case of 

gross substitutes). 

The following Proposition summarizes the properties of the HIIA demand system generated 

by (21). 

Proposition 3. Assume that the functions 휃 (∙) are either strictly decreasing and strictly 

convex or strictly increasing and strictly concave, are twice continuously differentiable, and satisfy 

the normalization (22). Then: 

(i) The Marshallian demand system generated by HIIA preferences must satisfy 

 

푥 = ℎ
휃 푝

푃(퐩)
퐶(퐩) , 

 

(23) 

where 퐶(퐩) is a price aggregator defined by 



18 
 

 
퐶(퐩) ≡ 푝 휃

푝
푃(퐩) . 

(24) 

(ii) When 푛 ≥ 3, 퐶(퐩) = 푐푃(퐩) only holds in the CES case. 

Proof. See the Appendix. ∎ 

 

4.3 Comparing HSA, HDIA, and HIIA 

A quick glance at Eqs. (18) and (23) suggests that both HDIA and HIIA are in general 

incompatible with HSA. Indeed, in both cases, the demand for each good depends on the own price 

and two price aggregators. For HDIA, they are 푃(퐩) and 퐵(퐩), which do not move together 

except the CES case, as shown by Proposition 2(ii). For HIIA, they are 푃(퐩) and 퐶(퐩), which 

do not move together except the CES case, as shown by Proposition 3(ii). We confirm this 

conjecture in the next proposition. 

Proposition 4. Assume that 푛 ≥ 3. Then: 

(i)  HDIA ∩ HSA = CES; 

(ii)  HIIA ∩ HSA = CES; 

(iii)  HDIA ∩ HIIA = CES. 

Proof. See the Appendix. ∎ 

Proposition 4 states that, apart from the CES, the three classes of homothetic preferences 

under consideration – HSA, HDIA and HIIA – are pairwise disjoint. Figure 1 visualizes this 

result.19 

                                                
19Notice an analogy between this result and the well-known result that the three classes of preferences, – homothetic, 
directly explicitly additive, and indirectly explicitly additive – are pairwise disjoint, apart from the CES. Compare our 
Figure 1 with Figure 1 in Thisse and Ushchev (2016). 
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Figure 1. Three alternative ways of departure from CES 

 

In other words, these three classes offer us three alternative (i.e., nonoverlapping) ways of 

departing from CES. Another implication of this Proposition is that a separable translog (Example 

3a), as a member of HSA demand systems, does not belong to HDIA nor HIIA. 

5. Concluding Remarks 
In modeling applied general equilibrium, working with homothetic preferences and CRS 

production technologies is necessary to justify the assumption of the representative consumers and 

perfect competition, and helps to isolate the role of relative prices in the market allocation of 

resources. In practice, however, most models assume that the utility and production functions 

satisfy not only the homotheticity/CRS but also the CES property, which imposes many additional 

restrictions. For those who want to investigate the implications of the homotheticity without the 

straightjacket of CES, the three classes of homothetic demand systems studied here – HSA, HDIA, 

and HIIA, – should be promising. Considering that these three classes of non-CES homothetic 

demand systems are defined non-parametrically and do not overlap, they should offer a plenty of 

new opportunities to explore. 

The reader may ask, legitimately, which one of these three classes should be explored first. 

To this, our recommendation is HSA, as it promises to be more tractable than HDIA and HIIA. To 

see this, compare the form of HSA demand systems, given by (3) – (4), with those of HDIA demand 

systems, given by (16) – (18) and of HIIA demand systems, given by (19), (21), and (22). For non-
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CES HDIA, the budget share of good 푖, 푝 푥 /ℎ, depends on two relative prices, 푝 /퐵(퐩) and 

푝 /푃(퐩). For non-CES HIIA, it also depends on two relative prices, 푝 /퐶(퐩) and 푝 /푃(퐩). In 

both HDIA and HIIA, all the cross-price effects are summarized in two price aggregators. In 

contrast, the budget share of good 푖, 푝 x /h, depends solely on one relative price, 푝 /퐴(퐩), for 

HSA, because all the cross-price effects are summarized in one price aggregator. Indeed, this is 

precisely the reason why we call this class Homothetic demand systems with a Single Aggregator. 

This makes it easier to solve for the equilibrium allocations and prices under HSA than under HDIA 

and HIIA. This is not to say that the ideal price index, 푃(퐩), is unimportant under HSA. It is 

important for evaluating the welfare implications of the market outcome. It does suggest, however, 

that the ideal price index, 푃(퐩), is not needed for computing the market outcome and conducing 

the comparative static exercises, which is a great advantage of HSA.20 

Needless to say, we are not arguing that HSA are superior to HDIA or HIIA. We are merely 

suggesting that one might want to explore HSA before HDIA and HIIA. All the cross-price effects 

in HDIA and HIIA are summarized in only two price aggregators, which buys some tractability 

compared to the general class of homothetic preferences. 

Finally, our characterization of the three classes is also relevant for those interested in 

applying non-CES homothetic demand systems in the Dixit-Stiglitz (1977) type horizontally 

differentiated monopolistic competition framework.21 For such applications, one should focus on 

a special case of symmetric preferences with gross substitutes (훼 (푧) < 0	for HSA,	휙 (푧) > 0 and 

휙 (푧) < 0	for HDIA, and Θ (푧) < 0 and Θ (푧) > 0 for HIIA). In addition, two modifications 

become necessary. First, to justify the assumption that the market power of each monopolistically 

competitive firm has no effect on the price aggregates, the set of differentiated goods (and of firms 

selling them) has to be a continuum, instead of a finite set. With some caveats on technical issues, 

this could be taken care of by replacing all the summation signs by the integral signs in the 

equations above. Second, to allow for the number (or, more precisely, the mass) of goods offered 

on the market to be endogenized through entry-exit of firms, we need to ensure the continuity of 

preferences by imposing an additional boundary conditions: 훼(∞) = 0 for HSA; 휙(0) = 0 for 

HDIA, and Θ(∞) = 0 for HIIA. Despite all these additional considerations, our results would still 

                                                
20 It should also be pointed out that the presence of two price aggregators in HDIA and HIIA systems makes them 
neither more general nor more flexible than HSA, because the two price aggregators are subject to the functional 
relationship, given by (17) in the case of HDIA and by (22) in the case of HIIA. 
21Benassy (1996), Feenstra (2003) or Kimball (1995) are among some earlier examples of non-CES homothetic 
demand systems in monopolistic competition. 
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go through. That is, HSA, HDIA, and HIIA offer three alternative (i.e., pairwise disjoint) classes 

of non-CES homothetic demand systems, and the cross-price effects are summarized in one price 

aggregator in the case of HSA and in two price aggregators in the case of HDIA and HIIA. 
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Appendix 

Proof of Proposition 1 

Proof of part (i). Recall that the Slutsky matrix (픰 ) associated with a demand system is defined 

by 

 
픰 ≡

휕푥
휕푝 + 푥

휕푥
휕ℎ . 

(A1) 

We proceed by proving the following two lemmas. 

Lemma 1. The Slutsky matrix associated with the demand system (3) – (4) is symmetric: 

픰 = 픰 . 

Proof. Combining (3) and (A1), we obtain for ji  : 

 
픰 = −

ℎ
퐴 푠

푝
퐴

휕퐴
휕푝 +

ℎ
푝 푝 푠

푝
퐴 푠

푝
퐴 . 

(A2) 

Differentiating (3) with respect to 푝 , we obtain after simplifications: 

휕퐴
휕푝 =

푠
푝
퐴

∑ 푠 푝
퐴

푝
퐴

. 

Plugging this expression into (A2) yields 
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픰 = −
1

∑ 푠 푝
퐴

푝
퐴

ℎ
퐴 푠

푝
퐴 푠

푝
퐴 +

ℎ
푝 푝 푠

푝
퐴 푠

푝
퐴 . 

(A3) 

Equation (A3) immediately implies Slutsky symmetry. This proves Lemma 1. ∎ 

Lemma 2. The Slutsky matrix associated with the demand system (3) – (4) is negative semidefinite. 

Proof. The diagonal entries 픰  of the Slustky matrix are given by 

픰 = −
ℎ
푝

푠
푝
퐴 − 푠

푝
퐴 +

ℎ
푝 푠

푝
퐴

1
퐴 −

ℎ
퐴 푠

푝
퐴

휕퐴
휕푝 , 

reorganizing which slightly, we obtain 

픰 = −
ℎ
푝
푠

푝
퐴 1 − 푠

푝
퐴 +

ℎ
퐴

퐴
푝 푠

푝
퐴 1−

휕퐴
휕푝

푝
퐴 . 

The quadratic form induced by the Slustky matrix (픰 ) of the demand system (3) – (4) is then 

given by 

픰 푡 푡 = −
ℎ
푝
푠

푝
퐴 1 − 푠

푝
퐴 푡 +

ℎ
퐴

퐴
푝 푠

푝
퐴 1 −

휕퐴
휕푝

푝
퐴 푡

,

 

+
ℎ
푝 푝 푠

푝
퐴 푠

푝
퐴 −

ℎ
퐴 푠

푝
퐴

휕퐴
휕푝 푡 푡

, :

. 

Here 푡 , … , 푡  are independent variables which take on arbitrary real values. Define 

휏 ≡
√ℎ
푝 푡 . 

Clearly, the new variables 휏 , … , 휏  also attain arbitrary real values, whence the quadtraic form 

associated with (픰 ) becomes 

픰 푡 푡
,

= − 푠
푝
퐴 1 − 푠

푝
퐴 휏 − 푠

푝
퐴 푠

푝
퐴

, :

휏 휏  

+ 푠
푝
퐴

푝
퐴 ∙ ℰ (퐴) 1 − ℰ (퐴) 휏 − ℰ (퐴)ℰ (퐴)휏 휏

, :

 

where ℰ (퐴) is the elasticity of the common price aggregator 퐴(퐩) with respect to 푝 : 

ℰ (퐴) ≡
휕퐴
휕푝

푝
퐴 =

푠 푝
퐴

푝
퐴

∑ 푠 푝
퐴

푝
퐴

 

Introduce the following notation: 
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푎 ≡ 푠
푝
퐴 , 푏 ≡ ℰ (퐴),									훾 ≡ 푠

푝
퐴

푝
퐴 . 

With this notation, assumption (7) takes the form 푎 > 훾푏 , while the quadratic form associated 

with the Slutsky matrix can be expressed as follows: 

픰 푡 푡 = −훕 (퐀 − 훾퐁)훕. 

Here 퐀 and 퐁 are (푛 × 푛)-matrices having the following structure: 

퐀 ≡ diag{푎 , … , 푎 } − 퐚퐚 , 퐁 ≡ diag{푏 , … , 푏 } − 퐛퐛 , 

where 퐚 ≡ (푎 , … , 푎 )  and 퐛 ≡ (푏 , … , 푏 ) . 

To show that the matrices 퐀 and 퐁 are both positive semidefinite, observe that, since both 

퐚 and 퐛  belong to the standard (푛 − 1)-dimensional simplex Δ , one can view them as 

probability distributions. The quadratic forms induced by 퐀 and 퐁 are given by 

훕 퐀훕 ≡ 푎 휏 − 푎 휏 = var(Τ ), 

훕 퐁훕 ≡ 푏 휏 − 푏 휏 = var(Τ ), 

where var(∙) is the variance operator, while Τ  and Τ  are discrete random variables with the 

following probability distributions: 

Prob{Τ = 휏 } = 푎 , Prob{Τ = 휏 } = 푏 . 

The fact that 퐀 and 퐁 are positive semidefinite proves Lemma 2 for the case when 훾 ≤ 0. To 

handle the case when 훾 > 0 , note that 훕  annihilates 훕 퐁훕 = var(Τ )  if and only if the 

distribution of Τ  is degenerate, i.e. when 훕 = 푐ퟏ. Furthermore, 훕 = 푐ퟏ also annihilates the 

Slutsky matrix. Therefore, it remains to prove that inf
훕 ퟏ

훕 (퐀 − 훾퐁)훕 ≥ 0. Furthermore, since 

훕 (퐀 − 훾퐁)훕 is positive homogeneous of degree 2, we can focus on such vectors 훕 for which 

훕 퐁훕 = 1. In other words, we need to show that 훾  cannot exceed the minimum value of the 

objective function in the following quadratic optimization problem: 

min
	훕

훕 퐀훕 

s.t. 

훕 퐁훕 = 1. 

Using the standard Lagrangian technique, we find that the minimizer 훕∗ must satisfy the FOC: 
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퐀훕∗ = λ∗퐁훕∗, 

where λ∗  is the minimum value of the objective function. In the coordinate form, the FOCs 

become 

푎 [휏∗ − 피(T∗)] = 휆∗푏 [휏∗ − 피(T∗)] (A4) 

for all 푖 = 1, … ,푛, where 피(∙) stands for the expectation operator, so that 

피(T∗) ≡ 푎 휏∗ , 피(T∗) ≡ 푏 휏∗ . 

It remains to show that 휆∗ > 훾. We argue by contradiction. Assume that 휆∗ ≤ 훾. Then, due to 

푎 > 훾푏 , we also have 푎 > 휆∗푏 . Define 

휏 ≡ max 휏∗ , 휏 ≡ min 휏∗. 

Two cases may arise. 

Case 1: 피(T∗) ≤ 피(T∗). As the random variables T∗ and T∗ both have non-degenerate 

distributions, we have 

휏 − 피(T∗) ≥ 휏 − 피(T∗) > 0. 

Combining this with 푎 > 휆∗푏 , we find that (A4) fails to hold for 푖 ∈ Arg max 휏∗ . 

Case 2: 피(T∗) > 피(T∗). In this case, we have 

휏 − 피(T∗) < 휏 − 피(T∗) < 0, 

which, taken together with 푎 > 휆∗푏 , implies that (A4) fails to hold for 푖 ∈ Arg min 휏∗ . 

This yields a contradiction, and proves Lemma 2. ∎ 

 

Combining Lemma 1, Lemma 2 and the budget balancedness property (5) implied by (3) 

and (4), we find that the demand system (3) – (4) satisfies all the conditions of Antonelli's 

integrability theorem (Antonelli, 1886; Hurwicz and Uzawa, 1971; see also Ch. 3 in Mas-Colell et 

al., 1995, and Ch. 2 in Jehle and Reny, 2012). Hence, there exists a unique monotone, convex and 

continuous rational preference generating the demand system (3) – (4). Furthermore, as the budget 

shares 푠 ≡ 푝 푥 /ℎ  of this demand system are independent of the income ℎ , the underlying 

preference must also be homothetic. 

It remains to prove that the budget-share mapping 퐬(퐳) over 퐬 (Δ ) can be uniquely 

recovered from an HSA demand system (3) – (4). Consider two different budget-share mappings 

퐬(퐳) and 퐬(퐳) satisfying (6) – (8) and generating the same HSA demand system: 퐱(퐩,ℎ) =

퐱(퐩,ℎ)  for all (퐩,ℎ) ∈ ℝ . Then, it must be that the price aggregators 퐴(퐩)  and 퐴(퐩) 



26 
 

implied by 퐬(퐳)  and 퐬(퐳)  are different. Fix 푝  and vary 퐩  so that 퐴(퐩)  remains 

unchanged while 퐴(퐩) changes (which is possible since 푛 ≥ 3). Then, we have 푥 (ℎ,퐩) ≠

푥 (ℎ,퐩) . Hence, the demand systems 퐱(퐩,ℎ)  and 퐱(퐩,ℎ)  are not identical. This yields a 

contradiction, which completes the proof of part (i). ∎ 

Proof of part (ii). Equations (2) and (3) imply the following identities: 

ℰ (푃) = 푠
푝
퐴(퐩) ,			푖 = 1, … , 푛. 

Hence, the ideal price index 푃(퐩) associated with a HSA demand system (3) – (4) must 

be a solution to the following system of first-order linear PDEs: 

 

 휕 푃(퐩)/휕푝
푃(퐩) =

1
푝 푠

푝
퐴(퐩) . 

(A5) 

Because 푃(퐩)  is linear homogeneous while 휕 푃(퐩)/휕푝  are homogeneous of degree zero, 

equation (A5) can be recast as follows: 

 휕 푃(퐳)/휕푧
푃(퐳) =

푠 (푧 )
푧 , 

(A6) 

where 퐳 ≡ 퐩/퐴(퐩). Integrating (A6), we get 

ln푃(퐳) =
s (ξ)
ξ dξ, 

which yields (9) after replacing 퐳 with 퐩/퐴(퐩). This completes the proof of part (ii). ∎ 

Proof of part (iii). Assume that 푃(퐩) = 푐퐴(퐩). Then, it follows immediately from (9) that 

 

 s (ξ)
ξ dξ = const, 

(A7) 

where 퐳 ≡ 퐩/퐴(퐩). One can also rewrite equation (4) as follows: 

 
푠 (z ) = 1. 

 

(A8) 

Hence, the gradients of the two (푛 − 1)-dimensional surfaces described, respectively, by (A7) and 

(A8), must be collinear: 

푠 (z ), … , 푠 (z ) ∥
푠 (z )

z , … ,
푠 (z )

z . 

This, in turn, implies 
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푠 ′(푧 )푧
푠 (푧 ) =

푠 ′ 푧 푧
푠 푧

< 1 

for all i, j = 1,2, … , n. Hence, the elasticities of s (⋅) must be independent of i. Furthermore, 

when n ≥ 3, these elasticities must also be constant, which can be shown by fixing 푧  and varying 

퐳  along the surface (A7). We conclude that s (⋅) must have the form 푠 (푧 ) = 훽 푧 , where 

훽 > 0 and 휎 > 0. As shown in Section 2 (see Example 2), this corresponds to the CES case. This 

completes the proof of part (iii) and proves the whole Proposition 1. ∎ 

 

Proof of the Self-Duality of HSA Demand Systems 

First, the one-to-one correspondence between 퐬(퐳) and 퐬∗(퐲) implies 푠∗(푦 ) ≡	푠 (푠∗(푦 )/푦 ), 

or equivalently 푠 (푧 ) ≡ 푠∗(푠 (푧 )/푧 ). Differentiating either of these two identities yields 

1−
푠 ′(푧 )푧
푠 (푧 ) 1 −

푠∗′(푦 )푦
푠∗(푦 ) = 1. 

Hence, we have: 

0 <
푠 ′(푧 )푧
푠 (푧 ) < 1 ⟺

푠∗′(푦 )푦
푠∗(푦 ) < 0; 

푠 ′(푧 )푧
푠 (푧 ) < 0 ⟺ 0 < 	

푠∗′(푦 )푦
푠∗(푦 ) < 1; 

and 

푠 ′(푧 )푧
푠 (푧 ) = 0 ⟺

푠∗′(푦 )푦
푠∗(푦 ) = 0.	 

Thus, the conditions (7) – (8) are equivalent to the conditions (7*) – (8*). 

Next, to see that (3) – (4) imply (3*) – (4*), rewrite (3) as: 

푝 푥
ℎ = 푠

푝
퐴(퐩) = 푠

푝 푥
ℎ

퐴(퐩)푥
ℎ 	⇒ 	 푠

푝
퐴(퐩) =

푝 푥
ℎ = 푠∗

퐴(퐩)푥
ℎ .	 

Let 		∇푢(퐱) 	≡ 푢 (퐱), 푢 (퐱), … , 푢 (퐱)	  denote the gradient of 푢(퐱) . Then, the inverse 

demand system (2*) generated by 푢(퐱) can be written as 퐩 = (ℎ 푢(퐱)⁄ )∇푢(퐱), so that: 

	푠
푝
퐴(퐩) =

푝 푥
ℎ = 푠∗

퐴(퐩)푥
ℎ = 푠∗

퐴 ∇푢(퐱) 푥
푢(퐱) = 	 푠∗

푥
퐴∗(퐱) , 

by setting 퐴∗(퐱) ≡ 푢(퐱) 퐴 ∇푢(퐱)⁄ , from which (3*) and (4*) follow. Likewise, rewrite (3*) as: 
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푝 푥
ℎ = 푠∗

푥
퐴∗(퐱) = 푠∗

푝 푥
ℎ

퐴∗(퐱)푝
ℎ 	⇒ 푠∗

푥
퐴∗(퐱) = 	

푝 푥
ℎ = 푠

퐴∗(퐱)푝
ℎ .	 

Let 	∇푃(퐩) 	≡ 푃 (퐩),푃 (퐩), … ,푃 (퐩)	  denote the gradient of 푃(퐩) . Then, the demand 

system (2) generated by 푃(퐩) can be written as 퐱 = (ℎ 푃(퐩)⁄ )∇푃(퐩), so that: 

	푠∗
푥

퐴∗(퐱) = 	
푝 푥
ℎ = 푠

퐴∗(퐱)푝
ℎ = 푠

퐴∗ ∇푃(퐩) 푝
푃(퐩) = 	 푠

푝
퐴(퐩) , 

by setting 퐴(퐩) ≡ 푃(퐩) 퐴∗ ∇푃(퐩)⁄ , from which (3) and (4) follow. This completes the proof. ∎ 

 

Proof of Proposition 2 

Proof of part (i). The expenditure minimization problem for a HDIA preference can be 

stated as follows: 

min
퐱

푝 푥  

s. t. 

휙
푥
푢 = 1, 

The FOCs of this problem are given by 

푝 = 휆휙 (푧 ), 

where 퐳 ≡ 퐱/푢, while 휆 is the Lagrange multiplier. Solving this FOCs for 푧 , we get 

푧 = (휙 )
푝
휆 , 

Plugging this into the constraint ∑ 휙 (푧 ) = 1, we find that 휆 = 퐵(퐩), where 퐵(퐩) 

is a solution to (20). Plugging 푧 = (휙 ) (푝 /퐵(퐩)) into the expression 푃(퐩) = ∑ 푝 푧  

for the price index yields (19). Finally, combining 푥 = 푢푧  with 푃(퐩) = ∑ 푝 푧  

yields 	푃(퐩)푢 = ∑ 푝 푥 = ℎ , from which 푥 = 푢푧 = ℎ푧 /푃(퐩) . Plugging 푧 =

(휙 ) (푝 /퐵(퐩)) into this expression yields (18). ∎ 

Proof of part (ii). Sufficiency is straightforward. To prove the necessity, assume that 

퐵(퐩) = 푐푃(퐩). Then, it follows immediately from (19) that 

 

 
휙 (푧 )푧 = const, 

(A9) 

where 푧 = (휙 ) (푝 /퐵(퐩)), which also satisfies 
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휙 (푧 ) = 1. 

(A10) 

Hence, the gradients of the two (푛 − 1)-dimensional surfaces described by (A9) and (A10) 

must be collinear to each other: 

휙 (푧 ), … ,휙 (푧 ) ∥ 휙 (푧 ) + 푧 휙 (푧 ), … ,휙 (푧 ) + 푧 휙 (푧 ) . 

Put it differently, the coordinates of these two gradients are proportional to each other, which 

implies 

푧 휙 (푧 )
휙 (푧 ) =

푧 휙 푧
휙 푧

 

for all 푖, 푗 = 1,2, … ,푛.  Hence, the elasticities of 휙 (⦁) must be independent of i.  Furthermore, 

for n ≥ 3, these elasticities must be also constant, which can be shown by fixing 푧  and varying 

퐳  along the surface (A9). This implies 휙 (푧) = 훾 푧 / + 푎 . Taking into account (15) and the 

requirement that 휙 (⦁) are all strictly increasing and strictly concave or strictly decreasing and 

strictly convex, we conclude that the underlying utility 푢 is CES. ∎ 

Proof of Proposition 3. 

Proof of part (i). Part (i) follows immediately from (2) and (21). 

Proof of part (ii). Sufficiency is straightforward. To prove the necessity, assume that 

퐶(퐩) = 푐푃(퐩). Then, it follows immediately from (19) that 

 
휃 (푧 )푧 = 푐표푛푠푡, 

(A11) 

where 푧 = 푝 /푃(퐩), which also satisfies, from (19), 

 
휃 (푧 ) = 1. 

(A12) 

Using equations (A11) – (A12), one could show the underlying utility 푢 is CES, along the 

same lines as the part of the proof of Proposition 2(ii) which followed (A9) and (A10). ∎ 

Proof of Proposition 4 

Proof of part (i). Sufficiency is straightforward. To prove necessity, assume that there 

exists a homothetic demand system which is both HSA and HDIA. Then, as implied by (3) and 

(18), the expenditure share of good 푖 must satisfy 
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푝 푥
ℎ = 푠

푝
퐴(퐩) =

푝
푃(퐩)

(휙 )
푝

퐵(퐩) . 

Setting 퐳 ≡ 퐩/퐴(퐩) and using linear homogeneity of 퐵(퐩) and 푃(퐩), we get: 

 푠 (푧 ) =
푧
푃(퐳)

(휙 )
푧
퐵(퐳) . (A13) 

Assume that 푃(퐳) ≠ 푐퐵(퐳). Then, because 푛 ≥ 3, we can perturb 퐳  holding 푧  fixed 

so that 푃(퐳) changes while 퐵(퐳) remains unchanged. This contradicts (A13). Hence it must be 

that 푃(퐳) = 푐퐵(퐳) for all 퐳 ∈ 퐬 (Δ ).  Because 퐵(퐩) and 푃(퐩) are linear homogeneous, 

this implies 푃(퐩) = 푐퐵(퐩).  Thus, from Proposition 2(ii), the demand system must be CES. ∎ 

Proof of part (ii). The proof goes along the same lines as that of part (i), except that the 

proportionality of 푃(퐩) to 퐵(퐩) is replaced by that of 푃(퐩) to 퐶(퐩). 

Proof of part (iii). Sufficiency is straightforward. To prove the necessity, assume there is a 

demand system which is both HDIA and HIIA. Then, it must be that 
푝 푥
ℎ =

푝
푃(퐩)

(휙 )
푝

퐵(퐩) =
푝
퐶(퐩)휃

푝
푃(퐩) . 

Setting 훏 ≡ 퐩/퐶(퐩), we get 

(휙 )
휉
퐵(훏) = 푃(훏)휃

휉
푃(훏) . 

Hence, using the same argument as in the proof of part (i), it is readily verified that 

푃(퐩) = 푐퐵(퐩). 

Proposition 2(ii) then implies that the demand system must be CES. 

This completes the proof of Proposition 4. ∎ 


