Relation Specificity, Market Thickness, and International Trade

Tomohiro Ara (Fukushima University)
Taiji Furusawa (Hitotsubashi University)

1

International trade and offshoring

- Volume of international trade has been rising
 - □ Components trade
 - □ Offshoring
- Has an increase in final goods trade stimulate offshoring, and hence stimulate components trade?
 - Relation specificity
- Interaction and feedback effects
 - □ Market thickness
 - □ Matching between upstream and downstream firms
 - □ Negotiation within matched pairs on profit shares
- Quality of products (or productivity) is affected by such environment

Related literature

- McLaren (AER 2000)
- Grossman and Helpman (QJE 2002)
- Nunn (QJE 2007)

3

Outline

- Basic model
- Autarkic equilibrium
 - □ Relation specificity of industry and market thickness
- Final-good trade equilibrium
 - □ Reduction of trade cost and market thickness
- Conclusion

Framework

- Two symmetric countries
- L individuals in each country
- Labor is the only production factor
 - ☐ Each individual has one unit of labor
 - \square Labor is the numeraire: w=1
- Several monopolistically-competitive industries
 - ☐ We focus on one industry in this talk
- Continuous time

-

Industry and consumer preferences

- A representative industry
 - □ Upstream and downstream sectors
 - U: c units of labor → 1 unit of component
 - D: 1 unit of component → 1 unit of the final good
 - ☐ Free entry in both sectors
- A representative consumer's preferences

$$u = \left[\int_{\omega \in \Omega} \alpha(\omega)^{\frac{1}{\sigma}} x(\omega)^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}$$

Relation specific investment

- ullet M upstream firms and N downstream firms match
- If matched: n pairs
 - □ Nash bargaining about profit sharing
 - \square Upstream firm invests $K(\gamma)$
 - □ Quality of the final good = 1
- If unmatched
 - □ U: Sell components in the market (perfect competition)
 - □ D: Buy components in the market
 - Quality of the good = $1/\gamma$
- **Degree** of relation specificity γ

Matching technology

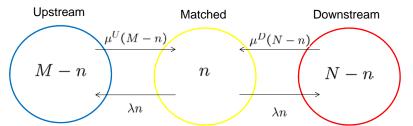
- Constant-returns-to-scale matching function

■ Probability of matching
$$\square \text{ D: } \mu^D = \frac{\nu(M-n,N-n)}{N-n} = \nu\left(\frac{M-n}{N-n},1\right) \equiv s(z)$$
 where $z \equiv \frac{M-n}{N-n}$

$$\square$$
 U: $\mu^U = \frac{\nu(M-n,N-n)}{M-n} = \frac{s(z)}{z}$

lacktriangle Relationship breaks down at a rate of λ

Matching in the steady state



$$\mu^{U} = \left(\frac{n}{M-n}\right)\lambda$$
$$\mu^{D} = \left(\frac{n}{N-n}\right)\lambda$$

9

Outline

- Basic model
- Autarkic equilibrium
 - □ Relation specificity of industry and market thickness
- Final-good trade equilibrium
 - □ Reduction of trade cost and market thickness
- Conclusion

Bellman equations

- Downstream firms
 - \square Matched: $r\tilde{V}^D = \tilde{\pi}^D + \lambda \left(V^D \tilde{V}^D \right) + \dot{\tilde{V}}^D$
 - \Box Unmatched: $rV^D = \pi^D + \mu^D \left(\tilde{V}^D V^D \right) + \dot{V}^D$
- Upstream firms
 - $\label{eq:matched:relation} \square \, \mathsf{Matched:} \ \ r\tilde{V}^U = \tilde{\pi}^U + \lambda \left(V^U \tilde{V}^U \right) + \dot{\tilde{V}}^U$
 - \Box Unmatched: $rV^U = \mu^U \left(\tilde{V}^U K V^U \right) + \dot{V}^U$

11

Steady state value functions

- Downstream firms
 - $\square \text{ Matched: } r\tilde{V}^D = \frac{(r+\mu^D)\tilde{\pi}^D}{r+\lambda+\mu^D} + \frac{\lambda\pi^D}{r+\lambda+\mu^D}$
 - □ Unmatched: $rV^D = \frac{(r+\lambda)\pi^D}{r+\lambda+\mu^D} + \frac{\mu^D\tilde{\pi}^D}{r+\lambda+\mu^D}$
- Upstream firms
 - $\square \text{Matched:} \quad r\tilde{V}^U = \frac{(r+\mu^U)\tilde{\pi}^U}{r+\lambda+\mu^U} \frac{\lambda\mu^U}{r+\lambda+\mu^U}K$
 - \Box Unmatched: $_{rV^U} = \frac{\mu^U \tilde{\pi}^U}{r + \lambda + \mu^U} \frac{\mu^U (r + \lambda)}{r + \lambda + \mu^U} K$

Nash bargaining

Problem

$$\begin{aligned} \max_{\tilde{\pi}^D,\,\tilde{\pi}^U} & \left(\tilde{V}^D - V^D\right) \left(\tilde{V}^U - K - V^U\right) \\ \text{s.t.} & \tilde{\pi}^U + \tilde{\pi}^D = \tilde{\pi} \end{aligned}$$

Payoffs

$$\begin{split} \tilde{\pi}^D &= \frac{1}{2(r+\lambda) + \mu^D + \mu^U} \left[(r+\lambda + \mu^D) \tilde{\pi} + (r+\lambda + \mu^U) \pi^D - (r+\lambda) (r+\lambda + \mu^D) K \right] \\ \tilde{\pi}^U &= \frac{1}{2(r+\lambda) + \mu^D + \mu^U} \left[(r+\lambda + \mu^U) \tilde{\pi} - (r+\lambda + \mu^U) \pi^D + (r+\lambda) (r+\lambda + \mu^D) K \right] \end{split}$$

□ Profits from the final good market

$$\tilde{\pi} = \gamma \pi^D = \frac{L}{\sigma \left(n + \frac{N-n}{\gamma} \right)}$$

13

Value functions

- Value functions, \tilde{V}^D , V^D , \tilde{V}^U , V^U can be written as functions of $\tilde{\pi}$ and $z = \frac{M-n}{N-n}$
- Value functions of unmatched firms

$$\begin{split} rV^D &= \phi^D \left[\tilde{\pi} - (r + \lambda)K \right] + (1 - \phi^D) \frac{\tilde{\pi}}{\gamma} \\ rV^U &= \phi^U \left[(\gamma - 1) \frac{\tilde{\pi}}{\gamma} - (r + \lambda)K \right] \end{split}$$

Free entry conditions

Downstream sector

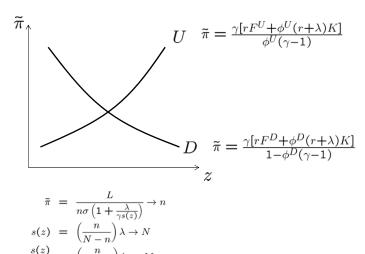
$$\begin{split} V^D = & F^D \\ \Rightarrow & \tilde{\pi} = \frac{\gamma[rF^D + \phi^D(r + \lambda)K]}{1 - \phi^D(\gamma - 1)} \end{split}$$

Upstream sector

$$\begin{split} V^U = & F^U \\ \Rightarrow & \tilde{\pi} = \frac{\gamma [rF^U + \phi^U(r+\lambda)K]}{\phi^U(\gamma-1)} \end{split}$$

15

Equilibrium



Market thickness

Total outputs of components

$$X = \frac{\sigma - 1}{\sigma c} \frac{L}{1 + \frac{\gamma S(z)}{\lambda}}$$

$$\tilde{X} = \frac{\sigma - 1}{\sigma c} \frac{L}{1 + \frac{\lambda}{\lambda}}$$

- Market thickness
 - □ Components traded in the market relative to components traded directly inside pairs

$$\frac{X}{\tilde{X}} = \frac{(N-n)x}{n\tilde{x}} = \frac{\lambda}{s(z)} \frac{1}{\gamma}$$

□ Number of unmatched upstream firms relative to that of unmatched downstream firms

$$z = \frac{M-n}{N-n}$$

17

Relation specificity and market thickness

- The higher the relation specificity
 - □ the lower the market thickness
 - the more favorable to downstream firms in matching
 - \square $M \uparrow$ but $X \downarrow$

Outline

- Basic model
- Autarkic equilibrium
 - □ Relation specificity of industry and market thickness
- Final-good trade equilibrium
 - □ Reduction of trade cost and market thickness
- Conclusion

19

Trade costs and trade pattern

- Trade costs
 - \square Fixed costs: F_X
 - \square Variable iceberg costs: τ
- Fixed costs → Only matched downstream firms export

Free entry conditions

Downstream sector

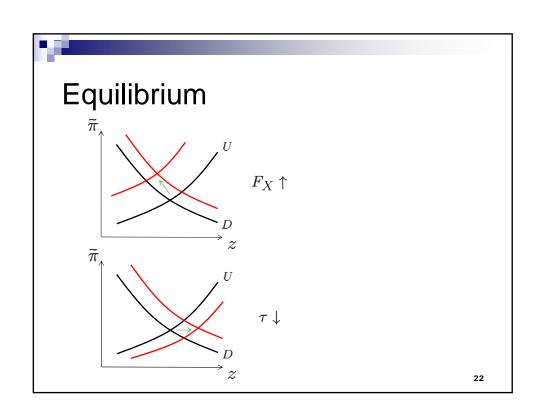
$$V^{D} = F^{D}$$

$$\Rightarrow \tilde{\pi} = \frac{(1 + \tau^{1-\sigma})\gamma[rF^{D} + \phi^{D}(r + \lambda)(K + F_{x})]}{1 - \phi^{D}[(1 + \tau^{1-\sigma})\gamma - 1]}$$

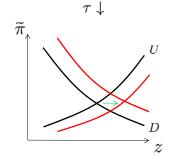
Upstream sector

$$V^{U} = F^{U}$$

$$\Rightarrow \tilde{\pi} = \frac{(1 + \tau^{1-\sigma})\gamma[rF^{U} + \phi^{U}(r + \lambda)(K + F_{X})]}{\phi^{U}[(1 + \tau^{1-\sigma})\gamma - 1]}$$



Reduction of trade costs and market thickness



- - \Box This effect is large, the larger is γ

23

Outline

- Basic model
- Autarkic equilibrium
 - □ Relation specificity of industry and market thickness
- Final-good trade equilibrium
 - □ Reduction of trade cost and market thickness
- Conclusion

Preliminary conclusion

- Trade affects market thickness; size of the effect varies with relation specificity of component traded in the industry
- Extension
 - □Offshoring