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The	Nature	of	technology,	structural	
transformation,	and	the	nature	of	work	

1 Introduction 
Technology is a fickle thing. During the century after 1870, rapidly advancing, labour-saving 
technology pulled workers into the manufacturing sector. This didn’t fundamentally change the nature 
of work – most people were still working with their hands – but it changed what they were making 
and where. During the same period, labour’s share of GDP was stable, and income inequality was 
falling. And then the correlations flipped.  

During the half century following 1970, rapidly advancing, labour-saving technology pushed workers 
out of manufacturing. It also deeply transformed the nature of work for many. Most workers switched 
to service-sector jobs that involve less ‘hand work’ and more ‘head work’. At the same time, labour’s 
share of GDP fell, and inequality rose (see the charts).  

How could technology have such radically different effects during these two different eras? 

 

This paper, which is very much in draft form, has two goals. The first is to crystallise – in a 
parsimonious general equilibrium setting – a simple accounting of the differences between the jobs-
technology link from 1870-1970, and the link from 1970-present. The account rests on the assertion 
that that outcomes were radically different because the technological shocks were radically different. 
The pre-1970 developments were driven by mechanisation; the post-1970 outcomes were driven by 
computerisation.  

Mechanisation favoured the making of things. The resulting automation directly boosted the 
productivity of people who worked with their hands. It helped people who worked with their heads, 
but only indirectly because it was a technology of things, not thoughts. It created masses of new 
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industrial jobs. Moreover, since most people back then worked with their hands, the more-manual-
than-mental aspect of the mechanisation lowered inequality by boosting the relative productivity of 
‘hand workers’ versus ‘head workers’. The 1970s technological impulse did just the opposite. 

Computerisation provided better tools for those who work with their heads, but better replacements 
for those who work with their hands. Creating better replacements for factory workers – robots and 
the like – was a massive push-factor that emptied factories even as industrial output continued to rise. 
The better tools for brain workers, by contrast, was a massive pull-factor into the service sector. It 
created millions of new service-sector and professional jobs – many of them in occupations that were 
previously unimageable. From the social cohesion point of view, the new technology was divisive. 
Since the ‘head workers’ were already better off than the ‘hand workers’, a technology which 
favoured brain over brawn favoured the few who were already favoured, while disfavouring the many 
who weren’t.  

The second goal is to contribute to the ‘future of work’ discussion by using general-equilibrium 
insights to address how the nature of future technology will affect the nature of future work. While we 
cannot know the names of future jobs, general equilibrium considerations allow us to think about the 
nature of those jobs. Here again, the main point of departure is the assertion is future technology is 
like to be very different than computerisation, or mechanisation.  

The recent commercialisation of Artificial Intelligence (AI) – most notably in the form of machine 
learning – is bringing a radically different automation to the workplace. In a nutshell, AI-trained 
computer models are allowing ‘software robots’ to ‘think’ in ways they never could before. Machine 
learning combine with big data has given computers a brand-new range of cognitive skills and some 
of these are useful in workplaces, especially offices. Machine learning, in other words, is providing 
better substitutes for ‘head workers’ – or at least when it comes to certain tasks that previously could 
only be done by humans. This could have big effects for a very simple reason. 80-90% of the 
workforce is in the service sector.  

Automation of factories will surely continue, but since such a small share of the 21st century 
workforce is in factories, the impact on office work is what will really affect the nature of work for 
societies as a whole. The key point is that many ‘thinking tasks’ are being automated – a range of 
tasks that used to require humans can now done by ‘white collar robots’ such as Robotic Process 
Automation systems, virtual assistants, and sophisticated AI platforms like IBM’s Watson. This wave 
of technology is, in other words, is providing better substitutes for people who worked with their 
heads because it was a technology of cognition, not construction. This is likely to bring about 
important changes.  

Until recently, most white-collar, service-sector, and professional jobs were shielded from automation 
by humans’ cogitative monopoly. Computers couldn’t think, so jobs that required any type of thinking 
– be it teaching nuclear physics, arranging flowers, or anything in between – required a human. 
Automation was a threat to people who did things with their hands, not their heads. Indeed, in many 
empirical studies, routine-ness is still used as a proxy for automation. Machine learning is changing 
this. 

Plan of paper. The paper is organised in three substantive sections in addition to the introduction and 
concluding remarks. The first section looks at implications of mechanisation, the second looks at 
computerisation, and the third uses the same framework to look at the potential impact of AI.  
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Literature review (incomplete). The first two sections could be viewed as working in the structural 
transformation literature. Here some key papers are including Matsuyama (1992, 2009), Hémous, and 
Olsen (2014), Caselli and Coleman (2001), Ngai and Pissarides (2007), Herrendorf, Schmitz, and 
Teixeira (2012), Michaels, Rauch, and Redding (2012), , Bustos, Garber, and Ponticelli (2017), 
McMillan, Rodrik, and Sepulveda (2017), Eckert and Peters (2018), Karádi and Koren (2018), and 
Sotelo (2018). See Herrendorf, Rogerson and Valentinyi (2014) for an overview.  

Matsuyama (2009) for a very succinct modelling of the two traditional drivers of structural change 
that Acemoglu and Guerrieri (2008) call “demand-side” (non-homothetic preferences) and “supply-
side” (biased technical progress) explanations. Ngai and Pissarides (2007) refer to them as the “utility-
based” and “technological” explanations, respectively.  

In terms of modelling of the technological differences between mechanisation and computerisation, 
the key references are various papers by Acemoglu and co-authors, especially Acemoglu and 
Restrepo (2016) who distinguish ‘enabling technologies’ (factor augmentation) and ‘replacing 
technologies’ (factor replacing). Acemoglu and Autor (2010) provide a clear, and empirically motived 
discussion of the discussion of the differences and economic mechanism at play.  

These articles build out from the very extensive empirical literature on the Skill-Biased Technical 
Change (SBTC) hypothesis posited by, inter alia, Freeman (1976), Katz and Murphy (1992), and 
Autor et al. (1998, 2008), and tested empirically by, for example, Katz and Murphy (1992), Autor 
Katz and Krueger (1998), and Autor, Katz and Kearney (2008), Hemous and Olsen (2014). The 
hypothesis is that a burst of new technology caused a rise in the demand for highly skilled workers 
that outstripped the supply and thus created inequality.  

A related set of contributions in the trade theory literature concerns the impact of technology on 
wages and outputs. This work last garnered substantial attention during the late 20th century when the 
issue was whether the deleterious developments in rich nation labour markets were due to ‘skill biased 
technological progress’ or globalisation. Most notable was the robust Krugman-Leamer exchange of 
views, e.g. Leamer (1994, 1996) and Krugman (1995). Other noteworthy contributions were made by 
Wood (1994), Jones and Ruffin (2007), and Xu (2000).  

2 Technology as machines helping manual workers 
A worker with an electric drill can do the work of, say, three workers using hand drills. At least since 
Robert Solow’s famous work on growth in the 1950s, economists tend to think of technological 
progress in this way – machines helping humans do more (this is also called the ‘factor augmenting’ 
view). 

From a partial equilibrium perspective, this sort of innovation cuts both ways when it comes to jobs 
(Ngai and Pissarides 2007). Mechanization means that the same pile of work can be done with fewer 
workers. All else equal, that makes technology into a job-destroying force. But the implied cost 
savings means lower prices and thus more sales (a higher pile of work) and this tends to make 
technology into a job-creating force. There is, in a sense, a footrace between the height of the pile and 
efficiency of workers. When the productivity-production footrace is won by the piling-raising side – 
technology acted as a ‘pull factor’ – pulling workers into the sector. Where the efficiency-side wins, it 
is a ‘push factor’, pushing workers out of the sector.  
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This partial equilibrium view misses some critical elements. If technology is a push factor, where do 
the displaced workers go? If it’s a pull factor, where do they come from? This is where general-
equilibrium (GE) analysis becomes important. Standard GE insights, however, are difficult to apply 
since GE insights link price and endowment shocks to wages, and outputs – not jobs. There is, 
however, an intellectual sleight-of-hand – first demonstrated by Jones (1965) – that gets past this.  

A few moments reflection reveals that under the machines-helping-humans conceptualisation of 
progress, one worker with a better drill can be thought of as three workers using the old technology. 
This reflection – the Jones’ Equivalence –reduces a new problem – what will better robots do to 
output? – to a problem previously solved – what happens to output when factor endowments change? 
The solution to the ‘problem previously solved’ has a name – the Rybczynski theorem. It says that an 
increase in the supply of one factor tends to expand the output of the sector that in intensive in its use. 
Moreover, the expansion is more than proportional, and other sectors tend to contract.  

A slight twist on this result gives us the jobs impact. As it turns out, the employment impact turns on 
the magnification aspect of Rybczynski. A tech shock that is Jones-equivalent to an expansion of the 
supply of A-workers will expand output of the A-intensive sector more than proportionally. This 
means it will create new jobs for A-workers in the A-intense sector since the output expansion more 
than compensates for the efficiency gain. This provides insights about the nature and sector of future 
jobs – even if it does not tell the names of the new jobs.  

This GE insight may seem counterintuitive from the partial equilibrium angle. After all, it says that 
the new jobs, the jobs of the future, will be relative intensive in the use of the type of labour that 
robots are replacing today. And the new jobs will appear in sectors that are relatively intensive in the 
type of labour with which robots are competing most directly. The insight, by contrast, is obvious 
from the general equilibrium perspective. If an economy gets more unskilled workers, the unskilled-
intensive sector must expand to absorb them all. Since this expansion will require some skilled 
workers – and these need to come from somewhere – the skill-intensive sector must shrink.  

This section presents a minimalist framework that permits crystallisation of the general equilibrium 
insights. It offers an economically logic accounting for why jobs were created fastest for workers who 
were most directly concerned with the progress and in sectors where these workers were used 
intensively. In short, it is an accounting of how mechanisation led to an expansion of the 
manufacturing sector. The model presents a version of the Rybczynski analysis in Baldwin, Haaland 
and Venables (2019); it is simplified in terms of the technology but set in an imperfectly competitive 
setting that allows us to talk about new firms, new products, and new jobs. 

2.1 The	basic	GE	model	–	Helpman‐Krugman	meets	Jones	
The economy has two productive factors (LA and LB) and two sectors (1 and 2) both of which are 
marked by Dixit-Stiglitz monopolistic competition. Preferences are CES within sectors and Cobb-
Douglas across sectors with 𝜇 as the expenditure share on sector-2 varieties.  

Production of each variety is marked by increasing returns defined by homothetic, linear cost 
functions: 𝑐 𝑤 ,𝑤 , 𝑥 𝑤 𝑎 𝑤 𝑎 𝑎 𝑥 𝐹 ;   𝑖 1,2. Here the 𝑤  𝑗 𝐴,𝐵  are wages, 

the 𝑎  𝑗 𝐴,𝐵, 𝑖 1,2  are the unit, labour-input requirements, and 𝑎  and 𝐹  are the variable- and 

fixed-costs parameters. Sector-1 production is intensive in ‘manual’ tasks and sector-2 is intensive in 
‘thinking’ tasks; A-workers are abundant in manual ‘skills’ (M-skills) and B-workers are abundant in 
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‘thinking’ skills (T-skills). The factor-intensity assumption, written using the factor-intensity ratios, 

𝜆 ≡ 𝑎 𝑎⁄ , is 𝜆 𝜆 , so A-workers are used intensive in sector 1 while B-workers are used 

intensively in sector 2. 

This section simplifies by assuming A-workers have only M-skills, and B-workers have only T-skills, 
so there is a perfect congruence between worker-type and sector skill-intensity. The regularity 
condition that ensures firms operate in both sectors in equilibrium is 𝜆 Λ 𝜆 , where Λ is the 
endowment ratio.  

As per Dixit-Stiglitz monopolistic competition, each firm produces a unique variety, and optimally 
prices it as a mark-up over marginal costs, i.e. 𝑝 𝑤 𝑎 𝑤 𝑎 𝑎 1 1/𝜎⁄ , where 𝜎  is 
the sector-i CES elasticity of substitution. Choosing units such that 𝑎 1 1/𝜎⁄ 1, and solving 
the free entry conditions, the equilibrium scale of firms, �̅� , and prices, 𝑝 , are 𝑝 𝑤 𝑎 𝑤 𝑎 ,
�̅� 𝐹 𝜎 ;  𝑖 1,2. With this, the closed economy equilibrium is characterised by employment, 
pricing, and market-clearing conditions, namely:1 

𝒑 𝑨𝒘, 𝑳 𝑨′𝑿, 𝑝 𝜇𝑋 1 𝜇 𝑋⁄ 2  

where the prime indicates the transpose and:  

𝒘 ≡
𝑤
𝑤 ,  𝒑 ≡

1
𝑝 ,  𝑳 ≡

𝐿
𝐿 ,  𝑿 ≡

𝑋
𝑋 ,𝑨 ≡

𝑎 𝑎
𝑎 𝑎 , 𝑋 ≡ 𝑛 �̅�    

Here 𝑛  is the mass of products/firms in sector-i.  

Clarity is served by adding a few assumptions that unclutter the formulas in this and subsequent 
sections by eliminating asymmetries that are unrelated to factor intensity. The number of A and B 
workers is equal (𝐿 𝐿 ≡ 𝐿), expenditure shares are equal (𝜇 1/2), and the endowment ratio is 
such that Λ 𝜆 𝜆 2⁄ . Solving for the number of firms/products and the number of jobs per 
sector per labour type yields: 

𝑛
𝑎 𝐿 𝑎 𝐿
𝑎 𝑎 𝑎 𝑎

 
1

𝐹 𝜎
, 𝑛

𝑎 𝐿 𝑎 𝐿
𝑎 𝑎 𝑎 𝑎

 
1

𝐹 𝜎
, 𝐽  𝑎 𝑛 𝐹 𝜎 3  

where  𝐽  is the number of jobs for i-type workers in sector j.  

Observe how these solutions for the n’s, and thus output and jobs, are determined entirely by 
employment considerations. This narrows the focus to the analysis to the pure, GE effects; the 𝑛 ’s, 
outputs, and thus jobs, respond to neither relative prices nor relative wages. As a result, the classic, 
structural-transformation considerations of demand elasticities and factor substitutability (Ngai and 
Pissarides 2007) are left aside. This is intentional and it is meant to clarify the GE mechanisms of 
action.  

2.2 Conceptualising	technology	–	machines	helping	humans	do	more	
Technological progress is conceptualised as reductions in the unit labour-input requirements (the 
𝑎 ’s). The Jones’ equivalences between such factor-augmenting tech shocks and endowment and 

 
1 All section 1 varieties always have the same price so there is no ambiguity as to the numeraire, 𝑝 . 
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price shocks are simple.2 Technical progress means a fall in some or all of the 𝑎 ’s. The vector of 

labour savings, 𝑺𝑸, and vector of cost savings, 𝑺𝑪, are: 

𝑺𝑸 ≡
𝑆
𝑆 𝑨𝑺

𝑋
𝑋 ,   𝑺𝑪 ≡

𝑆
𝑆 𝑨 𝒘       where 𝑨′ ≡

𝑑𝑎 𝑑𝑎
𝑑𝑎 𝑑𝑎 4  

and all elements of the 𝑨 and the 𝑺’s are positive.  

With these, the employment condition becomes 𝑳 𝑺𝑸 𝑨 ′𝑿, so we can view any tech shock as an 

endowment shock, and thus use the Rybczynski insights to address the jobs question. The pricing 
equations become: 𝒑 𝑺𝑪 𝑨𝒘, so the Stolper-Samuelson insight speak directly to tech-wages 
questions.  

Direct calculation using (3) and (4) yields: 

Result 1: Rybczynski theorem with a tech twist: Technical shocks impact output as follows: 

1) Sign effects: Any tech shock that saves more A- than B-labour (i.e. 𝑆 𝑆 ), creates more 
new firms/products in the A-intense sector than in the B-intense sector (i.e. 𝑛 𝑛 ). The 
opposite holds for 𝑆 𝑆 .  

a. This means that only the skill-bias of the tech shock matters for the sign of the 
relative output effect; the tech shock’s sectoral composition is irrelevant. 

2) Magnification effects:  
a. For pure skill-biased shocks (e.g. 𝑎 𝑎 , 𝑗 𝐴,𝐵), the standard Rybczynski 

effect applies without modification. The ‘own sector’ 𝑛  expands more than 
proportionally, where ‘own sector’ means the sector intensive in the use of the factor 
experiencing the productivity gain. The other sector contracts. 

b. For pure sector shocks (e.g. 𝑎 𝑎 , i=1,2), the affected sector’s output expands 
in the same proportion as the labour-savings shock, but the other sector’s output is 
unchanged (e.g. 𝑎 𝑎 0 yields 𝑋 𝑎 ,𝑋 0).  

i. This result is obvious since a sector-specific tech shock expands the 
endowment in exactly the same proportions as the affected sector uses 
factors, so all the saved factors are employed in the progressing sector.  

c. For Hicks Neutral shocks (i.e. 𝑎 𝑎 , 𝑗 𝐴,𝐵, 𝑗 1,2), all sectors expand in 
proportion to the shock. 

Sector- and factor-specific shocks are a mixture of 2a) and 2b). See Appendix for the general analysis. 

One sector- and factor-specific shock that is particularly relevant to the discussion is a skill-specific 
and sector-specific advance that boosts A-worker productivity in the A-intense sector 1. Plainly, 
𝑆 𝑆 0, so the result is an output expansion of sector 1 than is more than proportionate to the 

tech shock, i.e. 𝑛 𝑋 a 0 𝑋 𝑛 . Result 1 tells us what happens to output, but what 
about jobs?  

As it turns out, the magnification effect is critical. If jobs are to be created in a sector, the number of 
new firms has to expand more than proportionally compared to the labour-saving shock. To wit: 

 
2 This strict correspondence between technical change and endowment changes was introduced 
formally in Jones (1965 Section IX).  
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Result 2a: Rybczynski theorem with a jobs twist: The jobs impact of tech-shocks are marked by: 

1) For pure skill-biased shocks, technical progress that raises productivity only of, say, A-
workers creates new jobs in the sector that uses A-workers most intensely (sector 1); it 
destroys jobs in the other sector. NB: 

a. These new jobs involve producing new, previously unknown products, so we cannot 
know the names of the new jobs but we can know the sector in which they will 
appear. 

b. The job creation extends to both types of workers in sector 1.  
c. The shock destroys jobs for both types of workers in sector 2 since it leads to exit of 

sector-2 firms and elimination of their products from the market.  

Progress biased towards B-workers has the opposite effect.  

2) For pure sector shocks technical change that raises productivity A- and B-workers equally 
but only in one sector produces no job creation or destruction in either sector. 

3) For Hicks Neutral shocks, technical change that raises productivity A- and B-workers 
equally and in both sectors produce no job creation or destruction in either sector. 

See the appendix for details.  

A similar exercise using the Stolper-Samuelson theorem shows that real wage effects depend upon the 
sector in which the technical progress occurs, not the factor. This is exactly the opposite of the jobs 
impact where it was the factor that mattered, not the sector. In particular, pure sector-biased 
productivity advances raise the real wage of workers used intensively in the advancing sector; the 
other type of workers lose. A productivity gain that saves the same amount in both sectors, in the 
sense that 𝑆 𝑆 , will raise real wages in both sectors. 

Result 2b: Stolper-Samuelson theorem with a tech twist: 

1) For pure skill-biased shocks, technical progress that raises productivity only of, say, only A-
workers is non-negative if 𝑆 𝑆 , and negative otherwise. Given the imposed symmetry, 
this holds, so A-workers gain. B-workers lose as per the usual Stolper-Samuelson logic. 
Progress biased towards B-workers has the opposite effect.  

2) For pure sector shocks technical change that raises productivity A- and B-workers equally 
but only in one sector produces a real wage rise for the type of labour used intensively in the 
advancing sector; the real wage of the other type of labour falls.  

3) For Hicks Neutral shocks, technical change that raises productivity A- and B-workers 
equally and in both sectors produce raises all real wages proportionally.  

See the appendix for details.  

With these results in hand, we turn to the discussion of how biased technological progress could 
account for the first grand structure transformation and the inequality results that followed it.  

2.3 An	interpretation	of	the	results		
If we think of manufacturing as sector 1 and A-workers as manual workers, the great technological 
innovations of the 18th and early 19th centuries were mechanisation of manufacturing. In the model 
that corresponds to very lopsided reduction in the amount of labour needed to produce any 
manufactured good, namely 𝑎 . To be concrete, and to clarify the economic logic, assume that the 
only thing mechanisation did was reduce 𝑎 . 
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What Result 2 tells us is that the shock will create jobs for A-workers in manufacturing and destroy 
jobs for manual workers in the other industry. The result is that the share of workers in manufacturing 
would rise. For a partial equilibrium perspective, it might seem odd that workers were moving into the 
sector where automation was advancing fastest, but GE considerations – totally apart from the classic 
price-lowering-demand-expanding effects – link automation with job creation. As shall become clear 
when we contrast this with a different type of technology in the next section, this result is entwined 
with the nature of technology shock.  

2.3.1 Technology	and	the	nature	of	work	
During the shift of workers into factories in the 1870-1970 period, people had little idea of the names 
of the new jobs that would appear in the manufacturing sector. After all, all sort of products involving 
electricity, lighting, telecommunications, internal combustion engines, and industrial chemistry where 
invented well into the structural transformation. The light bulb, the radio, and the electric fan, just to 
take a few examples, were invented in invented in 1879, 1899, and 1882 (respectively). This is 
exactly how it happens in the model. The expansion of sector 1 involves the introduction of 
previously unknown varieties.  

But while the names of the new jobs were unknowable, GE considerations shed light on the nature of 
the new jobs. Since the technology was sparing of manual labour, the new jobs had to be manual-
labour intensive. Moreover, they had to be in the sector that used manual labour intensively.  

3 Technology as better a substitute for manual workers 
and better tools for brain workers  

The technology in the previous section was conceptualised in a standard way – sometimes called the 
‘factor augmenting’ technical progress. This approach makes strong (implicit) assumptions about the 
role of humans in production. By channelling all technology improvements through human capacities, 
this approach makes it impossible, or at least very awkward, to take the human out of the production 
process. That is exactly why we got the somewhat counterintuitive result that the technology was 
inevitably job-creating in the sector where it advanced fastest. But in the 21st century is this still the 
right way to conceptualise technology? 

There is an argument that the nature of technological advances changed qualitatively sometime 
around 1970 with the advent of computerisation – what some call the ‘third industrial revolution’. 
Industrial applications of computers and telecommunications developed gradually from WWII, 
eventually reached into factories from the 1960s with numerical control systems. The year 1973 
provides a convenient starting date for the ‘services transformation’ since that is the year that Texas 
Instrument employees Gary Boone and Michael Cochran patented the first ‘computer on a chip’. This 
was revolutionary.  

Putting a computer on a chip made earlier approaches to building computers obsolete; before, 
computers were built up from racks of circuit boards. By combining on a single thumb-nail sized 
device, the ‘brain’ (central processing unit, or CPU), digital memory, and circuits to handle inputs and 
outputs, the computer-on-a-chip reduced the cost and improved reliability – all while reducing power 
usage and thus overheating problems. And sticking a computer-on-a-chip into a robot arm allowed 
many repetitive mechanical tasks to be automated. Furthermore, the same robot could be quickly 
reprogrammed to do other tasks when the time came so the capital expenditure could be limited.  
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This was a watershed in the history of automation. It gave machines cognitive capacities that they 
never had. True, it was only the ‘thinking slow’ capacities – to use Kahneman’s term for logical, 
conscious thinking – but it allowed a disassociation of machines and human that was previously 
unheard of; robots, for example, could weld together some cars parts without continuous human 
intervention.  In short, the technology created better substitutes for humans who worked their hands.  

Note that the automation focused on routine tasks (thinking slow) since these were the ones that 
humans were most successful at turning into computer code. Given the 20th century programming 
technology, ‘think fast’ tasks – like natural language processing, computer vision, computer reading, 
and the like – were beyond the scope of automation. Humans were still needed for these thinking-fast 
tasks.  

What follows is a minimalist framework to clarify the economic mechanisms engaged by this very 
different form of technological progress. In short, it is an accounting of how computerisation led to a 
contraction of employment in the manufacturing sector and expansion of employment in the service 
sector. In the terminology of the seminal work by Acemoglu and Restrepo (2016), this section 
considers worker replacing technological progress.  

3.1 A	Ricardo‐Roy	model	of	robots	and	downgrade	unemployment	
The economy in this section closely resembles that of the previous section with a few complications 
and a few simplifications. There are two sectors, two types of skills, and two types of workers.  

The first complication is allowing workers to have mixed skill sets. A-type workers are still relatively 
well-endowed with M-skills, and B-workers are still relatively well endowed with T-skills, but they 
each have some of both. A key assumption is that workers can only have one job and thus can sell the 
skills to only one firm.  

To simplify the expressions, A-workers have 2 units of M and 1 unit of T while B-workers have the 
reverse (2 units of T and 1 unit of M), and factor intensity differences are taken to be extreme and 
polar opposites, namely sector-2 varieties are produced with only T-skills (one unit of T per sector-2 
firm), while sector-1 varieties are made with only M-skills (one unit of M per sector-1 firm). Given 
the perfect identification of workers and skills in the previous model, this is equivalent to assuming 
𝑎 𝑎 1,𝑎 𝑎 0, but note that the worker-skill equivalence is broken here, so it is best 
to think in skill-space rather than worker-space.  

Monopolistic competition now links prices to skill-rewards, which we denote with 𝑣 , 𝑖 𝑀,𝑇, i.e.: 

𝑝 𝑣 1, 𝑝 𝑣 , �̅� 𝐹 𝜎;   𝑖 1,2 𝑖  

The model is first solved for static technology, lining it up so most variables are unity initially. 

3.1.1 Pre‐robot	equilibrium	
Analysis begins with the worker’s employment choices. Workers go to the sector that affords them 
the highest wage. If they work in the M-intensive sector, their T-skills will be useless; if they work in 
the T-intensive sector, their M-skills will be useless. Plainly, B-types get jobs in sector 2 if and only if 
2𝑣 𝑣 . A-types work in sector 1 if and only if 2𝑣 𝑣 . Assortative matching (A and B types 
work in sector 1 and 2, respectively) occurs when: 

2𝑣 𝑣 𝑣 /2 11  
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Once we know perfect sorting occurs, the rest of the equilibrium is straightforward. Workers’ sectoral 
choice determines the inputs and thus the outputs of sectors 1 and 2. These, in turn, determine the 
relative price of goods and thus the 𝑣 ’s. The equilibrium is closed by noting the rewards to skills 
determine workers’ choice of sectors. Specifically, with sorting: 

𝑋 𝑀 2𝐿, 𝑋 𝑇 2𝐿 𝑖𝑖  

since 𝐿 𝐿 𝐿. The numeraire choice, and the market-clearing and pricing conditions imply: 

𝑣 𝑝
𝑋
𝑋

𝑀
𝑇

, 𝑝 𝑣 1, 𝑤 2𝑣 ,  𝑤 2𝑣 12  

where 𝑀, 𝑇 denote the supply of skills actually employed in equilibrium. The expressions for wages 
follow from workers’ skill sets and sector choices. Using the symmetry:  

𝑝 𝑝 𝑣 𝑣
𝑤
2

𝑤
2

𝜔
2

𝑤
2

1 

Note that a third of the economy’s supply if each skill is unemployed in equilibrium; this ‘skills 
unemployment’ is essential to the analysis. 

3.2 Computerisation:	Industrial	robots	performing	manual	tasks		
Technology is conceptualised as arriving in the form of industrial robots. For simplicity, robots appear 
exogenously, costlessly, and to be concrete, they are owned by B-type workers (who are now both 
workers and robot owners). Robots can supply only M-skills, so this is an extreme form skill-biased 
and sector-biased technological progress. Robot-generated M-skills are perfect substitutes for the M-
skills of humans. The number of robots is fixed at 𝑁  but we consider the impact of the robots 
becoming more proficient in the sense of providing more M-skills per robot, specifically: 

𝑀 𝐴 𝑁 , 𝑀 2𝐿 𝑀 #  

where 𝐴 0 is a factor-augmenting type of technology for robots (𝑑𝐴 0 means better robots). 
The second expression holds in the sorting equilibrium. Note that we remain in the two-skill, two-
sector setting even though there are three factors. 

3.2.1 A	three‐phase	impact	
The fact that the sorting condition, i.e., 2𝑣 𝑣 𝑣 /2, involves strict inequalities alerts us that 
the evolution of the economy will be marked by phases. In phase I, 2𝑣 𝑣 𝑣 /2, continues to 
hold even as the rising supply of M-skills depresses its relative reward, thus making A-types closer to 
indifferent to working in the two sectors. At some point, 𝑣  will have risen sufficiently to push 2𝑣
𝑣 𝑣 /2. This happens when the robot supply of M-skills reaches 𝑀  where 𝑣 2, i.e.: 

2
2𝐿 𝑀

2𝐿
  

so 𝑀 2𝐿. When 𝑀  reaches this point, phase II starts. 
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3.2.2 Blue	collars	turn	white	
Phase II is marked by A-workers shifting into sector 2. The rate of the shift is such that the output of 
both sectors rises in tandem so there is no change in prices or rewards to skills during phase II. Direct 
calculation shows that the number of switchers (i.e. of A-type workers who have switched into their 
non-comparative advantage sector), denoted as 𝐿 , is:3 

𝐿
𝑀 2𝐿

4
, 𝑅 2𝐿 

Once all A-workers have changed sectors, phase III begins, and 𝑣  continues its rise with 2𝑣 𝑣 , 
so all workers strictly prefer working in sector 2. This happens when 𝑀  is sufficiently high to ensure 

𝑣 2 without any humans in sector 1. Labelling this threshold as 𝑀 : 

2
𝑅

2𝐿 𝐿
  

so 𝑅 6𝐿. During phase III, the relative price of sector 2 products rises along with the real wages 
for both types of workers. To summarise: 

Result 3 (jobs effects): Technological progress which is sector- and factor- specific destroys jobs for 
workers in the sector experiencing the progress. New jobs involved in the production of new products 
are created in the other sector.  

Notice the stark difference from the impact of factor-augmenting technology in the previous section. 
Robots are a form of sector- and factor-specific technological advance but here the progress drives 
human out of the sector. Under the factor-augmenting technological conceptualisation, such progress 
pulled humans into the sector. Figure 1 illustrates the shift of workers and relative reward to the robot-
competing skill. The level of M-skills provided by robots, 𝑀 , is a proxy for the size of the 
technology shock.  

 
3 The expression is the 𝐿  that keeps 𝑣 2, i.e. 2  for 𝑀 𝑀 , 𝐿 0.  
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Figure 1: Three-phase structural adjustment to robotic technical progress 

 

3.2.3 Real	wages,	incomes,	inequality,	and	‘downgrade	unemployment’	
In all phases, the reward to M-skills is constant in terms of the numeraire (𝑣 =1), but in phase III 
only robots earn 𝑣 . The reward to T-skills, 𝑣 , rises as the price of sector-2 products rises in phase I 
and phase III. In real terms, A-workers start with real wages, 𝜔 2, and proceed to see their real 

earnings fall as the relative price of sector-2 products rises (the price index equals 𝑣 / ). B-
workers start with 𝜔 2, and see their real wages rise in phases I and III since 𝑤 2𝑣 , rises 
faster than goods prices. Specifically:4 

𝜔 , &
2

√𝑣
,    𝜔 , 𝑣 , 𝜔 2 𝑣  

using subscripts to indicate phases in an obvious notation. Observe that at both 𝑅 2𝐿 and 𝑅

6𝐿, 𝜔 √2, and 𝜔 2√2. These findings are reflected in Figure 2 and Result 4: 

Result 4 (welfare effects): The workers who are well-endowed with the skills that robots are 
providing (A-workers) are at first harmed by the technology while other workers are helped. 
However, once A-workers have moved fully out of the sector and are thus no longer directly 
competing with robots, further advances in robot proficiency are beneficial to all types of workers. 
Eventually, A-types see their real incomes rise above the pre-robot level.  

 
4 The expressions follow from 𝜔 , & √

, 𝜔 , √
, 𝜔

√
,  

 

Sector‐2 
employment 
share 

1

½ 

1

𝑣 /𝑣

½ 

Phase I Phase II Phase IIIPhase I Phase II Phase III

𝑀𝑖 2𝐿
𝑀

𝑀 6𝐿𝑀𝑖 2𝐿
𝑀

𝑀 6𝐿
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Figure 2: Real wage evolution over the three phases 

 

The value added that accrues to robot owners is simple to calculate. Robots provide only M-skills and 
these are, at any point in time, both valuable and limited, so perfectly competitive firms pay robot 
owners the same per-unit price of M-skills as they would pay to a human, namely 𝑣 1. As the 
quantity of M-skills provided per robot rises steadily, the own-product wage rises, but the real value 
falls. As a consequence, in real terms, robot owners gain in line with A-workers.  

In terms of GDP shares, the robots’ share rises from zero to ½ during phases 1 and 2, but then stays at 
half due to the Cobb-Douglas preferences. Obviously, this means labour’s share of GDP drops from 
100% to 50% over the same timeframe. Wage and income inequality also rise. 

With two income groups, the Gini coefficient equals the high-income group’s share of GDP minus its 
share of population: 𝐺 𝑠 𝑠 , where 𝑠  and 𝑠  are the B-workers’ share of GDP and population 
respectively. Having allocated robot ownership to B-workers arbitrarily, B-workers’ GDP share 
depends upon real wages and the reward paid to robot-owner. Due to the Cobb-Douglas preferences, 
half of national expenditure is devoted to sector-1 varieties and half to sector-2 varieties. With zero 
pure profits, this expenditure translates into factor payments, so the factors active in each sector get 
half the GDP in all phases. At the start of phase I, the Gini is zero since robots are getting nothing and 
wages are equal, but as robots start producing and earning more income inequality rises steadily due 
to both wage inequality (as discussed above) and due to the uneven distribution of robot income.  

From the beginning of phase III onward, robots get half of GDP, and workers divide the rest with B-
workers getting twice as much as A-workers. Thus the GDP share going to B-workers, 𝑠 , is 5/6, 
leaving 𝑠  equal to 1/6, while the shares are population are both ½. The Gini at the start of phases I 
and III are thus: 

𝐺𝑖𝑛𝑖 0, 𝐺𝑖𝑛𝑖 1 3⁄  

The Gini measure of income inequality rises steadily from the beginning of phase I till the start of 
phase III where it plateaus.  

2 

𝜔

2

𝜔

2𝐿 6𝐿 12𝐿

Units of 
numeraire

𝑀
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Redistribution of robot income could fully redress the rising inequality, since robots produce half of 
GDP. Consider the calculation for phase III where the Gini has stabilised at 1/3rd. Since B-workers get 
twice as much wage income as A-workers from sector 2, income equality could be restored by 
allocating 2/3rds of robot income to A-workers. This, in short, is an economy where robot incomes 
would be a means of avoiding the inequality aspects of technological progress. To summarise: 

Result 5 (Rising inequality and the nature of future work):  

1) Income inequality as measured by the Gini coefficient rises as robots get more productive;  
2) Redistribution of robot income could avert any rise in inequality.  

A-workers change sectors optimally, but by phase III none of them are using the skills in which they 
have an intrinsic ‘comparative advantage’. For the A-type workers, the shift is essentially a 
downgrading of jobs – at least in terms of utilising their talents. They do not become unemployed, but 
they are unable to take advantage of their M-skills in their new jobs.  

Note also that by phase III, robots have taken over all M-tasks in the economy – thus fundamentally 
transforming the nature of work.  

Result 6 (nature of work and downgrading):  

At the economy wide level, advancing robot technology changes the nature of work. From phase three 
onward, robots do what they can; humans do what robots cannot do. Better robots create no 
unemployment in terms of the number of workers with jobs, but it leads to the unemployment of the M-
skills of all workers. This is not a new development for B-workers, but for A-workers this could be 
viewed as ‘downgrade unemployment’. 

Proposition 7 (labour share of GDP): Throughout phase one, labour share of GDP falls from 100% 
to 50%, and stays there from the beginning of phase III onwards.  

Stepping outside the model, Phase II can be thought of as the de-industrialisation of advanced 
economies since the 1970s, namely the shift of jobs from factories to offices.  

3.3 An	interpretation	of	the	shift	of	jobs	to	offices		
If we think of sector 1 as manufacturing and A-workers as blue-collar workers, and sector 2 as the 
service sector and B-workers as white collar workers, this stylised account of the impact of robots 
provides a suggestive accounting of why technology had such different effects in the century before 
1970 and the half century after 1970. Labour saving technology in manufacturing created jobs when it 
was labour-augmented but destroyed jobs when it was labour substituting.  

3.3.1 Technology	and	the	nature	of	work	redux	
When computerisation arose in the 18th century and accelerated at the end of the 19th century, people 
knew that technology would destroy many jobs. New jobs would, and were created, but at the time, 
people could not know the names of the jobs, or what sort of things workers would be making.  

Some early visionaries talked about the post-industrial society, especially Bell (1974). He pointed out 
that by 1973, half the US workforce was in services, and he predicted that this expansion would 
continue and spread abroad since computerization was enhancing the productivity of service workers. 
Again, something like GE reasoning was being used to predict the nature of future work even if Bell 
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had no idea of the particulars of the services that future workers would be producing. But the nature of 
the GE insights is quite different. 

The GE implications for the nature of work in the previous section – where machine-helping-humans 
technology made farmers into factory workers – was based on the constraint that all the workers got 
reemployed. Rybczynski logic guided our thinking as to the factor-intensity of the new jobs and 
sectors in which they would appear.  

In this sector – where robots-replacing-humans technology made factory workers into service workers 
– the GE hints for the nature of work are radically different. Here the nature of future work is 
predicted by a process of elimination; humans do what robots can’t do. In this simple model, all 
manual tasks are eventually taken over by robots; the only tasks left for humans to do was thinking 
tasks. The GE insight then is that the new jobs would be intensive in the task that robots couldn’t do.   

In short, GE insights applicable to the ‘blue collars turn white’ transformation and robot technology 
are radically different than they were in the ‘farm to factory’ transformation driven by human-
augmenting technology.  

The nature of robots, however, is changing rapidly. They are starting to acquire the ability to provide 
thinking skills. This will surely displace many human jobs. The next section looks at what GE insights 
can tell us about where the new jobs will appear and what they will be like.  

4 AI as a better substitute for brain workers and better 
tools for manual workers  

Just as computerisation can be thought of as a technological watershed in the 1970s, Machine 
Learning can be viewed as a watershed from about 2016. A convenient signpost for this second 
technological watershed is the reversal of Moravec’s Paradox.  

In the late stone ages of AI, 1988 to be specific, AI-pioneer Hans Moravec wrote, "it is comparatively 
easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and 
difficult or impossible to give them the skills of a one-year-old when it comes to perception and 
mobility." 5 Until recently, computers were good at the hard stuff but bad at the easy stuff. The deep 
reason was programming.  

Humans taught computers to do things with computer programs. These explained, step-by-step, what 
the computer should do. This meant that before we could teach computers to think, we had to 
understand how we think, step-by-step. The paradox arose since, as another early hero of AI, Marvin 
Minsky put it, "we're least aware of what our minds do best." We understand how we do arithmetic, 
algebra, and archery; we haven’t a clue as to how we recognize a cat, or keep our balance when 
running over hill and dale. Machine learning solved the paradox by skipping the programming.  

With machine learning, the computer (the ‘machine’ part) estimates a very large statistical model of 
how to guess a solution to a particular problem (the ‘learning’ part). Thanks to advances in computing 
power, and access to big data, computers trained by machine learning routinely achieve human-level 
performance on specific thinking tasks - like recognizing faces or translating Chinese into English. In 

 
5 Moravec, Hans (1988), Mind Children, Harvard University Press. 
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essence, such software are ‘white-collar robots’, where the white collar part refers to the workers 
replaced by the tech. 

This section explores the impact of technology when technology is providing better substitutes for 
thinking skills. 

4.1 Machine	Learning:	Algorithms	performing	thinking	tasks		
The economy considered here is exactly as in the previous section, and the analysis starts from the 
phase III situation (where all humans are working in sector 2). The single addition is related to the 
development of commercially viable AI. Computer models, trained with AI algorithms (such as ‘deep 
learning’, neural networks, or similar), are able to provide thinking skills that are perfect substitutes 
with human-provided thinking skills. Thus, the total supply of T-skills in the economy is now:  

𝑇 𝐴 𝑁 , 𝑇 3𝐿 𝑅 #  

where 𝑇  is the robot-supplied T-skills, and, with a slight abuse of the technical terms, the robot 
providers of T-skills are labelled ‘algorithms’ with the number of algorithms denoted as 𝑁 . The 
supply of AI-generated thinking skills is 𝑁  times the effectiveness of each algorithm, 𝐴 . As before, 
the technological progress is costless and exogenous, and these ‘white collar robots’ are owned by B-
workers.   

4.1.1 White	collars	turn	blue	
The introduction of AI shifts the economy into a new phase, phase IV. Assuming algorithms get better 
faster than industrial robots, 𝑇 rises relative to 𝑀, and this drives up sector-2 production relative to 
sector-1. The attendant relative output shift lowers 𝑝  and thus 𝑣 . At first (i.e. during phase IV), the 
progress of AI has no impact on the allocation of jobs since 𝑣 2 and all workers earn more in 
sector 2 (recall the analysis opens during phase III from the previous model).  

At some point, 𝑣  is driven back down to a level (namely 𝑣 1) where A-workers start switching 
back to sector-1 jobs. The threshold for this shift between phase IV and V is defined by: 

1
𝑀

3𝐿 𝑇
  

so phase V starts when the quantity of AI-generated T-skills reaches 𝑇 𝑀 3𝐿. As happened in 
phase II, the flow of A-workers from sector-2 to sector-1 proceeds at a pace that keeps 𝑣 1. When 
all A-workers (who have 2 units of M-skills to sell) are in sector-1, the economy is back at a situation 
of assortive matching and a new phase, phase VI starts. Here 𝑣 𝑝  is:  

𝑣
2𝐿 𝑀
2𝐿 𝑇

 

Thus the threshold between phases V and phase VI, is defined by  
𝑇 𝑀  

Assuming AI productivity continues to advance faster than industry robot productivity, 𝑣  will 

continue to decline. Once 𝑣 , B-workers, who have only 1 unit of M-skills to sell, start to switch 

to sector-1 as well. This is the start of phase VII, the threshold for which is defined by  
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1
2

2𝐿 𝑀
2𝐿 𝑇

 

so phase VII begins once 𝑇 2 𝐿 𝑀 . Again, the reallocation of jobs flattens AI’s impact on 𝑣 , 

so 𝑣  while B-workers are transitioning to sector 2. The final phase, phase VIII, begins once all 

B-workers have made the transition. From this point, the price of sector-2 varieties continues to fall, 
bringing 𝑣  down with it, but 𝑣 1, as always (by choice of numeraire). Phase VIII starts when 𝑇  
surpasses: 

1
3𝐿 𝑀

𝑇
 

so phase VIII is triggered when 𝑇  exceeds 𝑇 3𝐿 𝑀 . The phases are illustrated in Figure 3. 

Figure 3: Phases of structural adjustment to AI  

 

In terms of real wages, A-workers and B-workers are harmed by the drop in 𝑣  during phase IV since 
their wage falls faster than prices. The owners of AI, by contrast, win during this phase since they 
earn 𝑣  for each unit of T-skills produced by their algorithms.  
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In phase V, when A-workers are moving to sector 1, the wages are flat along with prices so only AI-
owners gain. At the end of this phase, each worker is in his or her comparative advantage sector and 
the equilibrium shifts to phase VI. Here A-workers benefit since their wages are pinned at 2𝑣 2, 
but the price index continues to fall. B-workers continue to lose at the same pace as in phase IV. From 
the start of phase VII, B-workers start to join A-workers in sector 1 even though they can only sell 
one unit of M-skills rather than 2 units of T-skills. The shifting of workers freezes prices and wages, 
so again only AI-owners gain. A- and B-workers neither gain nor lose. Once the shift to sector 1 is 
complete, phase VIII begins and both types of workers gain.  

4.1.2 Inequality	and	labour	share	of	GDP	
The rising wage inequality that was associated with the rise of industrial robots is reversed by the rise 
of AI-trained algorithms in phase V. That is, both A- and B-wages equal unity in terms of the 
numeraire in phase V. Beyond that, AI drives inequality back up but this time in favour of the 
previously disfavoured A-workers since now B-workers are experiencing the downgrade 
unemployment. By phase VIII, A-workers earn twice as much as B-workers since they have twice as 
much M to sell.  

5 Concluding remarks 
There is an argument that the economy is on the cusp of a third grand transformation. The first was all 
about goods. It shifted people from one type of manual work (agriculture) to another (manufacturing). 
The second destroyed jobs for those who worked mostly with their hands (in factories) while creating 
jobs for those who mostly worked with their heads (in offices). Today’s technological impulse is 
doing a bit of this, but with so few workers left in factories, the extra capabilities that industrial robots 
are getting from machine learning constitute more of a continuation than a transformation. The real 
transformative impact will be felt in the service sector. But what will the future jobs be like?  

The first part of any likely answer is an admission of ignorance and caution. Automation displaced 
jobs in the nineteenth and twentieth centuries. Human creativity invented “needs” that we did not 
even know we needed. That’s why many of us today work in jobs that would sound very strange to 
Charles Dickens in nineteenth-century London. The jobs were created in service sectors since they 
were the sectors that were shielded from automation. The same will almost surely happen again today. 
Jobs will appear in sheltered sectors. But what sort of jobs will these be?  

We cannot know what new jobs will be, but by studying the competitive advantage of AI, we can say 
quite a bit about what sheltered jobs will look like in the future – a point I discuss at length in my 
book (Baldwin 2019). By studying the things that AI-trained robots can already do well, we can 
predict that the jobs that survive competition from AI and the new jobs that will be created are those 
that stress humanity’s great advantages. Algorithms have not been very successful at acquiring social 
intelligence, emotional intelligence, creativity, innovativeness, or the ability to deal with unknown 
situations. Experts estimate that it will take something like fifty years for AI to attain top-level human 
performance in social skills that are useful in the workplace, like social and emotional reasoning, 
coordination with many people, acting in emotionally appropriate ways, and social and emotional 
sensing.  

This suggests that the most human skills will be sheltered from AI competition for many years. The 
implication is as simple as it is profound. Humanity will be important in most of the jobs of the future. 
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That is the good news. The bad news is that millions, perhaps hundreds of millions of white-collar and 
professional workers will have to change jobs and perhaps retrain.  

If the correct figure turns out to be in the millions and it is spread over a couple of decades, the 
transition is unlikely to trigger a politically significant backlash. But it the correct figure is in the 
hundreds of millions and is spread over a single decade, the economic and social upheaval could lead 
to a backlash of the type we saw in the 1800s and 1900s.  

This may sound alarmist, but to put in context, I close with an extended quote taken from a speech 
given by the US labour minister (Secretary of Labor) James J Davis in 1927 – just few years for the 
greatest upheaval of all – the Great Depression – and the greatest backlashes of all – the rise of 
communism, fascism, and New Deal capitalism.  

Excerpt from a 1927 speech by US Sectary of Labor, James Davis: 

“Every day sees the perfection of some new mechanical miracle that enables one man to 
do better and more quickly what many men used to do. In the past six years especially, 
our progress in the lavish use of power and then harnessing that power to high speed 
productivity machinery has been tremendous. Nothing like it has ever been seen on earth. 

We must, I think, soon begin to think a little less of our wonderful machines and a little 
more of our wonderful American workers, the alternative being that we may have 
discontent on our hands. 

Understand me, I am not an alarmist. If you take the long view there’s nothing in sight 
that gives us great concern. I am no more concerned over the men once needed to blow 
bottles then I am over the seamstress that we once were afraid would starve when the 
sewing machine came in. In the end, every device that lightens human toil and increases 
production is a boon to humanity. It is only the period of adjustment, when machines turn 
workers out of their old jobs and into new ones, that we must learn to handle them so as 
to reduce distress to the minimum. 

We must ever go on, fearlessly scrapping all methods and old machines as fast as we find 
them obsolete. But we cannot afford the human and business waste of scrapping men. In 
former times the man suddenly displaced by a machine was left to his fate.  

The new invention we need is a way of caring for this fellow made temporarily jobless. In 
this enlightened day we want him to go on earning, buying, consuming, adding his bit to 
the national wealth in the form of product and wages.” 

If only President Coolidge had listened to his minister! 
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